J. Li, D. Alvarez, K. Chatty, M. Abou-Khalil, R. Gauthier, C. Russ, C. Seguin, R. Halbach
{"title":"65纳米块体CMOS工艺中栅极-硅化和栅极-非硅化、漏极/源极-硅化阻流ESD nmosfet失效机理分析","authors":"J. Li, D. Alvarez, K. Chatty, M. Abou-Khalil, R. Gauthier, C. Russ, C. Seguin, R. Halbach","doi":"10.1109/IPFA.2006.251045","DOIUrl":null,"url":null,"abstract":"Electrical and SEM analysis of gate-silicided (GS) and gate-non-silicided (GNS) ESD NMOSFETs in a 65nm bulk CMOS technology show that the failure mechanism switches away from classical drain-to-source filamentation when the silicidation between the silicide-blocked drain/source and the polysilicon gate is avoided. For 2.5V thick oxide devices, drain-to-substrate junction shorting was observed, whereas, for 1.0V thin oxide devices, gate-oxide breakdown failure occurred","PeriodicalId":283576,"journal":{"name":"2006 13th International Symposium on the Physical and Failure Analysis of Integrated Circuits","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Analysis of Failure Mechanism on Gate-Silicided and Gate-Non-Silicided, Drain/Source Silicide-blocked ESD NMOSFETs in a 65nm Bulk CMOS Technology\",\"authors\":\"J. Li, D. Alvarez, K. Chatty, M. Abou-Khalil, R. Gauthier, C. Russ, C. Seguin, R. Halbach\",\"doi\":\"10.1109/IPFA.2006.251045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical and SEM analysis of gate-silicided (GS) and gate-non-silicided (GNS) ESD NMOSFETs in a 65nm bulk CMOS technology show that the failure mechanism switches away from classical drain-to-source filamentation when the silicidation between the silicide-blocked drain/source and the polysilicon gate is avoided. For 2.5V thick oxide devices, drain-to-substrate junction shorting was observed, whereas, for 1.0V thin oxide devices, gate-oxide breakdown failure occurred\",\"PeriodicalId\":283576,\"journal\":{\"name\":\"2006 13th International Symposium on the Physical and Failure Analysis of Integrated Circuits\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 13th International Symposium on the Physical and Failure Analysis of Integrated Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA.2006.251045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 13th International Symposium on the Physical and Failure Analysis of Integrated Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA.2006.251045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Failure Mechanism on Gate-Silicided and Gate-Non-Silicided, Drain/Source Silicide-blocked ESD NMOSFETs in a 65nm Bulk CMOS Technology
Electrical and SEM analysis of gate-silicided (GS) and gate-non-silicided (GNS) ESD NMOSFETs in a 65nm bulk CMOS technology show that the failure mechanism switches away from classical drain-to-source filamentation when the silicidation between the silicide-blocked drain/source and the polysilicon gate is avoided. For 2.5V thick oxide devices, drain-to-substrate junction shorting was observed, whereas, for 1.0V thin oxide devices, gate-oxide breakdown failure occurred