柔性和可穿戴电子产品的计算力学

Zhuangjian Liu
{"title":"柔性和可穿戴电子产品的计算力学","authors":"Zhuangjian Liu","doi":"10.1109/eurosime.2019.8724576","DOIUrl":null,"url":null,"abstract":"The flexible and wearable electronics system is an emerging technology for next-generation electronics. This type of electronics system can geometrically accommodate large mechanical deformations without imparting significant strains and stress in the materials from which it is constructed. Potential applications of this technology include flexible sensors, communicative packaging, transmitters and new photovoltaic and microfluidic devices, as well as areas of medicine and athletics for which flexible and conformable electronics are required. Computational Mechanics studies reveal many of the key underlying aspects of these systems and can establish important design criteria concerning device failure. For example, results are used to indicate the maximum strain or stress in a system, or the critical strain for buckling, etc. Furthermore, studies are made to optimize mechanics and materials for circuits that exhibit maximum stretchability.","PeriodicalId":357224,"journal":{"name":"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Mechanics for Flexible and Wearable Electronics\",\"authors\":\"Zhuangjian Liu\",\"doi\":\"10.1109/eurosime.2019.8724576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flexible and wearable electronics system is an emerging technology for next-generation electronics. This type of electronics system can geometrically accommodate large mechanical deformations without imparting significant strains and stress in the materials from which it is constructed. Potential applications of this technology include flexible sensors, communicative packaging, transmitters and new photovoltaic and microfluidic devices, as well as areas of medicine and athletics for which flexible and conformable electronics are required. Computational Mechanics studies reveal many of the key underlying aspects of these systems and can establish important design criteria concerning device failure. For example, results are used to indicate the maximum strain or stress in a system, or the critical strain for buckling, etc. Furthermore, studies are made to optimize mechanics and materials for circuits that exhibit maximum stretchability.\",\"PeriodicalId\":357224,\"journal\":{\"name\":\"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eurosime.2019.8724576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eurosime.2019.8724576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

柔性可穿戴电子系统是下一代电子产品的新兴技术。这种类型的电子系统可以在几何上适应大的机械变形,而不会在其构造的材料中产生显着的应变和应力。这项技术的潜在应用包括柔性传感器、通信封装、发射器和新的光伏和微流体装置,以及需要柔性和合格电子设备的医学和体育领域。计算力学研究揭示了这些系统的许多关键潜在方面,并可以建立有关设备故障的重要设计标准。例如,结果用于指示系统中的最大应变或应力,或屈曲的临界应变等。此外,还进行了优化电路力学和材料的研究,使其具有最大的拉伸性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Mechanics for Flexible and Wearable Electronics
The flexible and wearable electronics system is an emerging technology for next-generation electronics. This type of electronics system can geometrically accommodate large mechanical deformations without imparting significant strains and stress in the materials from which it is constructed. Potential applications of this technology include flexible sensors, communicative packaging, transmitters and new photovoltaic and microfluidic devices, as well as areas of medicine and athletics for which flexible and conformable electronics are required. Computational Mechanics studies reveal many of the key underlying aspects of these systems and can establish important design criteria concerning device failure. For example, results are used to indicate the maximum strain or stress in a system, or the critical strain for buckling, etc. Furthermore, studies are made to optimize mechanics and materials for circuits that exhibit maximum stretchability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信