低功耗转换和捕获通过atpg配置嵌入式使能捕获位

Yi Sun, Hui Jiang, L. Ramakrishnan, Jennifer Dworak, Kundan Nepal, T. Manikas, R. I. Bahar
{"title":"低功耗转换和捕获通过atpg配置嵌入式使能捕获位","authors":"Yi Sun, Hui Jiang, L. Ramakrishnan, Jennifer Dworak, Kundan Nepal, T. Manikas, R. I. Bahar","doi":"10.1109/ITC50571.2021.00045","DOIUrl":null,"url":null,"abstract":"Excessive test power can cause multiple issues at manufacturing as well as during field test. To reduce both shift and capture power during test, we propose a DFT-based approach where we split the scan chains into segments and use extra control bits inserted between the segments to determine whether a particular segment will capture. A significant advantage of this approach is that a standard ATPG tool is capable of automatically generating the appropriate values for the control bits in the test patterns. This is true not only for stuck-at fault test sets, but for Launch-off-Capture (LOC) transition tests as well. It eliminates the need for expensive post processing or modification of the ATPG tool. Up to 37% power reduction can be achieved for a stuck-at test set while up to 35% reduction can be achieved for a transition test set for the circuits studied.","PeriodicalId":147006,"journal":{"name":"2021 IEEE International Test Conference (ITC)","volume":"19 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low Power Shift and Capture through ATPG-Configured Embedded Enable Capture Bits\",\"authors\":\"Yi Sun, Hui Jiang, L. Ramakrishnan, Jennifer Dworak, Kundan Nepal, T. Manikas, R. I. Bahar\",\"doi\":\"10.1109/ITC50571.2021.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excessive test power can cause multiple issues at manufacturing as well as during field test. To reduce both shift and capture power during test, we propose a DFT-based approach where we split the scan chains into segments and use extra control bits inserted between the segments to determine whether a particular segment will capture. A significant advantage of this approach is that a standard ATPG tool is capable of automatically generating the appropriate values for the control bits in the test patterns. This is true not only for stuck-at fault test sets, but for Launch-off-Capture (LOC) transition tests as well. It eliminates the need for expensive post processing or modification of the ATPG tool. Up to 37% power reduction can be achieved for a stuck-at test set while up to 35% reduction can be achieved for a transition test set for the circuits studied.\",\"PeriodicalId\":147006,\"journal\":{\"name\":\"2021 IEEE International Test Conference (ITC)\",\"volume\":\"19 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Test Conference (ITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC50571.2021.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC50571.2021.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

过大的测试功率会在制造和现场测试中引起多种问题。为了在测试期间减少移位和捕获功率,我们提出了一种基于dft的方法,我们将扫描链分割成段,并在段之间插入额外的控制位,以确定特定段是否会捕获。这种方法的一个显著优点是,标准的ATPG工具能够自动为测试模式中的控制位生成适当的值。这不仅适用于卡在故障测试集,也适用于启动-捕获(Launch-off-Capture, LOC)转换测试。它消除了昂贵的后处理或修改ATPG工具的需要。对于所研究的电路,卡滞测试集可降低高达37%的功率,而过渡测试集可降低高达35%的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Power Shift and Capture through ATPG-Configured Embedded Enable Capture Bits
Excessive test power can cause multiple issues at manufacturing as well as during field test. To reduce both shift and capture power during test, we propose a DFT-based approach where we split the scan chains into segments and use extra control bits inserted between the segments to determine whether a particular segment will capture. A significant advantage of this approach is that a standard ATPG tool is capable of automatically generating the appropriate values for the control bits in the test patterns. This is true not only for stuck-at fault test sets, but for Launch-off-Capture (LOC) transition tests as well. It eliminates the need for expensive post processing or modification of the ATPG tool. Up to 37% power reduction can be achieved for a stuck-at test set while up to 35% reduction can be achieved for a transition test set for the circuits studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信