{"title":"量子纳米结构中的局部化与散粒噪声","authors":"M. Macucci, P. Marconcini, G. Iannaccone","doi":"10.1109/ICNF.2011.5994283","DOIUrl":null,"url":null,"abstract":"We present an investigation with a quantum model of shot noise suppression in a series of cascaded barriers, showing that the well-known diffusive limit reported in the literature on the basis of semiclassical models can be achieved only in the presence of a mechanism leading to mode mixing, such as a magnetic field. Without mode mixing, strong localization appears, because the localization length is of the order of the mean free path. These results are consistent with existing experimental data on shot noise in superlattices.","PeriodicalId":137085,"journal":{"name":"2011 21st International Conference on Noise and Fluctuations","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localization and shot noise in quantum nanostructures\",\"authors\":\"M. Macucci, P. Marconcini, G. Iannaccone\",\"doi\":\"10.1109/ICNF.2011.5994283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an investigation with a quantum model of shot noise suppression in a series of cascaded barriers, showing that the well-known diffusive limit reported in the literature on the basis of semiclassical models can be achieved only in the presence of a mechanism leading to mode mixing, such as a magnetic field. Without mode mixing, strong localization appears, because the localization length is of the order of the mean free path. These results are consistent with existing experimental data on shot noise in superlattices.\",\"PeriodicalId\":137085,\"journal\":{\"name\":\"2011 21st International Conference on Noise and Fluctuations\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 21st International Conference on Noise and Fluctuations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNF.2011.5994283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 21st International Conference on Noise and Fluctuations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNF.2011.5994283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Localization and shot noise in quantum nanostructures
We present an investigation with a quantum model of shot noise suppression in a series of cascaded barriers, showing that the well-known diffusive limit reported in the literature on the basis of semiclassical models can be achieved only in the presence of a mechanism leading to mode mixing, such as a magnetic field. Without mode mixing, strong localization appears, because the localization length is of the order of the mean free path. These results are consistent with existing experimental data on shot noise in superlattices.