基于bert的习语检测模型

Gihan Gamage, Daswin De Silva, A. Adikari, D. Alahakoon
{"title":"基于bert的习语检测模型","authors":"Gihan Gamage, Daswin De Silva, A. Adikari, D. Alahakoon","doi":"10.1109/HSI55341.2022.9869485","DOIUrl":null,"url":null,"abstract":"Idioms are figures of speech that contradict the principle of compositionality. This disposition of idioms can misdirect Natural Language Processing (NLP) techniques, which mostly focus on the literal meaning of terms. In this paper, we propose a novel idiom detection model that distinguishes between literal and idiomatic expressions. It utilizes a token classification approach to fine-tune BERT(Bidirectional Encoder Representations from Transformers). It is empirically evaluated on four idiom datasets, yielding an accuracy of more than 0.94. This model adds to the robustness and diversity of NLP techniques available to process and understand increasing magnitudes of free-form text and speech. Furthermore, the social value of this model is in enabling non-native speakers to comprehend the nuances of a foreign language.","PeriodicalId":282607,"journal":{"name":"2022 15th International Conference on Human System Interaction (HSI)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A BERT-based Idiom Detection Model\",\"authors\":\"Gihan Gamage, Daswin De Silva, A. Adikari, D. Alahakoon\",\"doi\":\"10.1109/HSI55341.2022.9869485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Idioms are figures of speech that contradict the principle of compositionality. This disposition of idioms can misdirect Natural Language Processing (NLP) techniques, which mostly focus on the literal meaning of terms. In this paper, we propose a novel idiom detection model that distinguishes between literal and idiomatic expressions. It utilizes a token classification approach to fine-tune BERT(Bidirectional Encoder Representations from Transformers). It is empirically evaluated on four idiom datasets, yielding an accuracy of more than 0.94. This model adds to the robustness and diversity of NLP techniques available to process and understand increasing magnitudes of free-form text and speech. Furthermore, the social value of this model is in enabling non-native speakers to comprehend the nuances of a foreign language.\",\"PeriodicalId\":282607,\"journal\":{\"name\":\"2022 15th International Conference on Human System Interaction (HSI)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 15th International Conference on Human System Interaction (HSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HSI55341.2022.9869485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 15th International Conference on Human System Interaction (HSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI55341.2022.9869485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

习语是与组合原则相矛盾的修辞手法。习语的这种倾向可能会误导自然语言处理(NLP)技术,后者主要关注术语的字面意义。在本文中,我们提出了一种新的习语检测模型来区分字面表达和习惯表达。它利用令牌分类方法来微调BERT(来自变压器的双向编码器表示)。它在四个成语数据集上进行了实证评估,准确度超过0.94。该模型增加了NLP技术的鲁棒性和多样性,可用于处理和理解日益增长的自由格式文本和语音。此外,这种模式的社会价值在于使非母语人士能够理解外语的细微差别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A BERT-based Idiom Detection Model
Idioms are figures of speech that contradict the principle of compositionality. This disposition of idioms can misdirect Natural Language Processing (NLP) techniques, which mostly focus on the literal meaning of terms. In this paper, we propose a novel idiom detection model that distinguishes between literal and idiomatic expressions. It utilizes a token classification approach to fine-tune BERT(Bidirectional Encoder Representations from Transformers). It is empirically evaluated on four idiom datasets, yielding an accuracy of more than 0.94. This model adds to the robustness and diversity of NLP techniques available to process and understand increasing magnitudes of free-form text and speech. Furthermore, the social value of this model is in enabling non-native speakers to comprehend the nuances of a foreign language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信