N. Zamdmer, J. Plouchart, Jonghae Kim, Liang-Hung Lu, S. Narasimha, P. O'Neil, A. Ray, M. Sherony, L. Wagner
{"title":"缩放SOI CMOS在高频模拟电路中的适用性","authors":"N. Zamdmer, J. Plouchart, Jonghae Kim, Liang-Hung Lu, S. Narasimha, P. O'Neil, A. Ray, M. Sherony, L. Wagner","doi":"10.1109/ESSDERC.2002.194980","DOIUrl":null,"url":null,"abstract":"In this paper we show that the ability of SOI NMOS transistors to function as high-bandwidth amplifiers continuously improves as gate length shrinks below 50 nm. fT of 196 GHz is achieved at Lpoly = 47 nm. Neither the transconductance nor the input capacitance reaches a limiting value at Lpoly = 47 nm. The gate sheet resistance, which influences the FET input resistance and high-frequency noise, shows little variation and is an acceptable value (7: /square) in the Lpoly = 55 nm to 77 nm range. We also present four features of an aggressively scaled 0.13-Pm partially-depleted SOI CMOS technology that show its suitability for high-frequency circuit applications: RF noise performance comparable to state-of-the art III-V devices, body-tied SOI FETs that achieve the same low-frequency noise as bulk FETs, a multilevel back-end that allows high-density and high-Q passives, and negligible floating-body-induced jitter in RF circuits. 1. FET scaling","PeriodicalId":207896,"journal":{"name":"32nd European Solid-State Device Research Conference","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Suitability of Scaled SOI CMOS for High-Frequency Analog Circuits\",\"authors\":\"N. Zamdmer, J. Plouchart, Jonghae Kim, Liang-Hung Lu, S. Narasimha, P. O'Neil, A. Ray, M. Sherony, L. Wagner\",\"doi\":\"10.1109/ESSDERC.2002.194980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we show that the ability of SOI NMOS transistors to function as high-bandwidth amplifiers continuously improves as gate length shrinks below 50 nm. fT of 196 GHz is achieved at Lpoly = 47 nm. Neither the transconductance nor the input capacitance reaches a limiting value at Lpoly = 47 nm. The gate sheet resistance, which influences the FET input resistance and high-frequency noise, shows little variation and is an acceptable value (7: /square) in the Lpoly = 55 nm to 77 nm range. We also present four features of an aggressively scaled 0.13-Pm partially-depleted SOI CMOS technology that show its suitability for high-frequency circuit applications: RF noise performance comparable to state-of-the art III-V devices, body-tied SOI FETs that achieve the same low-frequency noise as bulk FETs, a multilevel back-end that allows high-density and high-Q passives, and negligible floating-body-induced jitter in RF circuits. 1. FET scaling\",\"PeriodicalId\":207896,\"journal\":{\"name\":\"32nd European Solid-State Device Research Conference\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd European Solid-State Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2002.194980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd European Solid-State Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2002.194980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Suitability of Scaled SOI CMOS for High-Frequency Analog Circuits
In this paper we show that the ability of SOI NMOS transistors to function as high-bandwidth amplifiers continuously improves as gate length shrinks below 50 nm. fT of 196 GHz is achieved at Lpoly = 47 nm. Neither the transconductance nor the input capacitance reaches a limiting value at Lpoly = 47 nm. The gate sheet resistance, which influences the FET input resistance and high-frequency noise, shows little variation and is an acceptable value (7: /square) in the Lpoly = 55 nm to 77 nm range. We also present four features of an aggressively scaled 0.13-Pm partially-depleted SOI CMOS technology that show its suitability for high-frequency circuit applications: RF noise performance comparable to state-of-the art III-V devices, body-tied SOI FETs that achieve the same low-frequency noise as bulk FETs, a multilevel back-end that allows high-density and high-Q passives, and negligible floating-body-induced jitter in RF circuits. 1. FET scaling