新型缓蚀剂稳定锡表面导电胶粘剂的接触电阻

Yi Li, K. Moon, C. Wong
{"title":"新型缓蚀剂稳定锡表面导电胶粘剂的接触电阻","authors":"Yi Li, K. Moon, C. Wong","doi":"10.1109/ISAPM.2005.1432053","DOIUrl":null,"url":null,"abstract":"Electrically conductive adhesives (ECAs) have been proposed as one of the major alternatives for tin/lead solders in electronic packaging. However, some critical limitations of this technology, such as lower electrical conductivity and unstable contact resistance during elevated temperature and humidity aging, have slowed its potentially wide applications in electronics industry. In this study, novel organic corrosion inhibitors were discovered and introduced into a typical ECA formulation. With the incorporation of small amount of the additives, much lower bulk resistivity of ECAs and significantly stabilized contact resistance on Sn surfaces could be achieved. Contact angle and FTIR characterization indicated the affinity and interaction between the corrosion inhibitors and the metal surfaces. Therefore, a barrier passivation layer could form on Sn surfaces for ECA with the effective corrosion inhibitors. X-ray diffraction analyses confirmed that such a passivation layer could protect the Sn surface and prevent oxidation and corrosion under the elevated temperature and humidity environment.","PeriodicalId":181674,"journal":{"name":"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stabilizing contact resistance of conductive adhesives on Sn surface by novel corrosion inhibitors\",\"authors\":\"Yi Li, K. Moon, C. Wong\",\"doi\":\"10.1109/ISAPM.2005.1432053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrically conductive adhesives (ECAs) have been proposed as one of the major alternatives for tin/lead solders in electronic packaging. However, some critical limitations of this technology, such as lower electrical conductivity and unstable contact resistance during elevated temperature and humidity aging, have slowed its potentially wide applications in electronics industry. In this study, novel organic corrosion inhibitors were discovered and introduced into a typical ECA formulation. With the incorporation of small amount of the additives, much lower bulk resistivity of ECAs and significantly stabilized contact resistance on Sn surfaces could be achieved. Contact angle and FTIR characterization indicated the affinity and interaction between the corrosion inhibitors and the metal surfaces. Therefore, a barrier passivation layer could form on Sn surfaces for ECA with the effective corrosion inhibitors. X-ray diffraction analyses confirmed that such a passivation layer could protect the Sn surface and prevent oxidation and corrosion under the elevated temperature and humidity environment.\",\"PeriodicalId\":181674,\"journal\":{\"name\":\"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAPM.2005.1432053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAPM.2005.1432053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

导电胶粘剂(ECAs)已被提出作为电子封装中锡/铅焊料的主要替代品之一。然而,该技术的一些关键限制,例如在高温和高湿度老化过程中较低的导电性和不稳定的接触电阻,阻碍了其在电子工业中的广泛应用。本研究发现了新型有机缓蚀剂,并将其引入到典型的ECA配方中。添加少量添加剂后,ECAs的体积电阻率大大降低,Sn表面的接触电阻明显稳定。接触角和FTIR表征表明了缓蚀剂与金属表面的亲和力和相互作用。因此,使用有效的缓蚀剂可以在Sn表面形成屏障钝化层。x射线衍射分析证实,在高温高湿环境下,这种钝化层可以保护锡表面,防止氧化和腐蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilizing contact resistance of conductive adhesives on Sn surface by novel corrosion inhibitors
Electrically conductive adhesives (ECAs) have been proposed as one of the major alternatives for tin/lead solders in electronic packaging. However, some critical limitations of this technology, such as lower electrical conductivity and unstable contact resistance during elevated temperature and humidity aging, have slowed its potentially wide applications in electronics industry. In this study, novel organic corrosion inhibitors were discovered and introduced into a typical ECA formulation. With the incorporation of small amount of the additives, much lower bulk resistivity of ECAs and significantly stabilized contact resistance on Sn surfaces could be achieved. Contact angle and FTIR characterization indicated the affinity and interaction between the corrosion inhibitors and the metal surfaces. Therefore, a barrier passivation layer could form on Sn surfaces for ECA with the effective corrosion inhibitors. X-ray diffraction analyses confirmed that such a passivation layer could protect the Sn surface and prevent oxidation and corrosion under the elevated temperature and humidity environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信