T. Liu, L. Hutin, I. Chen, R. Nathanael, Yenhao Chen, M. Spencer, E. Alon
{"title":"继电器逻辑开关技术的最新进展与挑战","authors":"T. Liu, L. Hutin, I. Chen, R. Nathanael, Yenhao Chen, M. Spencer, E. Alon","doi":"10.1109/VLSIT.2012.6242452","DOIUrl":null,"url":null,"abstract":"The energy efficiency of CMOS technology is fundamentally limited by transistor off-state leakage (IOFF). Mechanical switches have zero IOFF and therefore could be advantageous for ultra-low-power digital logic applications. This paper discusses recent advancements in relay logic switch technology and current challenges which must be addressed to realize its promise.","PeriodicalId":266298,"journal":{"name":"2012 Symposium on VLSI Technology (VLSIT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Recent progress and challenges for relay logic switch technology\",\"authors\":\"T. Liu, L. Hutin, I. Chen, R. Nathanael, Yenhao Chen, M. Spencer, E. Alon\",\"doi\":\"10.1109/VLSIT.2012.6242452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy efficiency of CMOS technology is fundamentally limited by transistor off-state leakage (IOFF). Mechanical switches have zero IOFF and therefore could be advantageous for ultra-low-power digital logic applications. This paper discusses recent advancements in relay logic switch technology and current challenges which must be addressed to realize its promise.\",\"PeriodicalId\":266298,\"journal\":{\"name\":\"2012 Symposium on VLSI Technology (VLSIT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Symposium on VLSI Technology (VLSIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.2012.6242452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Symposium on VLSI Technology (VLSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2012.6242452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent progress and challenges for relay logic switch technology
The energy efficiency of CMOS technology is fundamentally limited by transistor off-state leakage (IOFF). Mechanical switches have zero IOFF and therefore could be advantageous for ultra-low-power digital logic applications. This paper discusses recent advancements in relay logic switch technology and current challenges which must be addressed to realize its promise.