压力连接单次应力松弛试验的设计

R. Goel
{"title":"压力连接单次应力松弛试验的设计","authors":"R. Goel","doi":"10.1109/TPHP.1977.1135210","DOIUrl":null,"url":null,"abstract":"Pressure connections, for example, solderless wrap, sprit beam type, etc., have a common design principle of maintaining a high pressure at the interface of the wire and the terminal. Because of the creep characteristics of all materials, such connections can lose their pressure sustaining ability with time and temperature. Considering the long expected life of a connection, usually 40 years, and the ever in· creasing operating temperatures, made necessary by miniaturization of telephone equipment, the loss of force in a connection may become exceedingiy large and may make the connection vulnerable to mechanical disturbances and attacks from the pollutants in the environment. A method of extrapolating force loss at the contact interface from short-term data to long-term expectation is discussed. Based on the concept of thermally activated processes, an accelerated stress-relaxation test is designed that would cause the expected service rife relaxation to occur in a shorter period. Finally, it is shown that, to simulate a given service condition for all alloys of a common base metal, it is possible to choose a metal system among them that will yield a severe test condition for all alloys in that group. For example, it is shown that the 118°C-33 day stress-relaxation test used for simulating service conditions of 57°C for 40 years of copper C102 (OF copper) would induce as much or more relaxation than would occur in 40 years at 57°C in any copper-based alloy used as a spring material.","PeriodicalId":387212,"journal":{"name":"IEEE Transactions on Parts, Hybrids, and Packaging","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1977-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of a Single Stress-Relaxation Test for Pressure Connections\",\"authors\":\"R. Goel\",\"doi\":\"10.1109/TPHP.1977.1135210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pressure connections, for example, solderless wrap, sprit beam type, etc., have a common design principle of maintaining a high pressure at the interface of the wire and the terminal. Because of the creep characteristics of all materials, such connections can lose their pressure sustaining ability with time and temperature. Considering the long expected life of a connection, usually 40 years, and the ever in· creasing operating temperatures, made necessary by miniaturization of telephone equipment, the loss of force in a connection may become exceedingiy large and may make the connection vulnerable to mechanical disturbances and attacks from the pollutants in the environment. A method of extrapolating force loss at the contact interface from short-term data to long-term expectation is discussed. Based on the concept of thermally activated processes, an accelerated stress-relaxation test is designed that would cause the expected service rife relaxation to occur in a shorter period. Finally, it is shown that, to simulate a given service condition for all alloys of a common base metal, it is possible to choose a metal system among them that will yield a severe test condition for all alloys in that group. For example, it is shown that the 118°C-33 day stress-relaxation test used for simulating service conditions of 57°C for 40 years of copper C102 (OF copper) would induce as much or more relaxation than would occur in 40 years at 57°C in any copper-based alloy used as a spring material.\",\"PeriodicalId\":387212,\"journal\":{\"name\":\"IEEE Transactions on Parts, Hybrids, and Packaging\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1977-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parts, Hybrids, and Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPHP.1977.1135210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parts, Hybrids, and Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPHP.1977.1135210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

压力连接,如无焊包绕式、精灵梁式等,都有一个共同的设计原则,即在导线与端子的界面处保持高压。由于所有材料的蠕变特性,这种连接会随着时间和温度的变化而失去其保压能力。考虑到连接的预期寿命很长,通常为40年,以及电话设备小型化所必需的不断升高的工作温度,连接中的力损失可能会变得非常大,并且可能使连接容易受到机械干扰和环境中污染物的攻击。讨论了一种从短期数据推断接触界面力损失到长期预期的方法。基于热激活过程的概念,设计了一种加速应力松弛试验,可以在更短的时间内实现预期的使用过程松弛。最后,结果表明,为了模拟一种普通母材的所有合金的给定使用条件,可以在其中选择一种金属系统,该金属系统将对该组中所有合金产生严格的测试条件。例如,在118°C-33天的应力松弛试验中,用于模拟57°C 40年的铜C102 (of铜)的使用条件,与任何用作弹簧材料的铜基合金在57°C 40年的使用条件相比,会产生同样多或更多的松弛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a Single Stress-Relaxation Test for Pressure Connections
Pressure connections, for example, solderless wrap, sprit beam type, etc., have a common design principle of maintaining a high pressure at the interface of the wire and the terminal. Because of the creep characteristics of all materials, such connections can lose their pressure sustaining ability with time and temperature. Considering the long expected life of a connection, usually 40 years, and the ever in· creasing operating temperatures, made necessary by miniaturization of telephone equipment, the loss of force in a connection may become exceedingiy large and may make the connection vulnerable to mechanical disturbances and attacks from the pollutants in the environment. A method of extrapolating force loss at the contact interface from short-term data to long-term expectation is discussed. Based on the concept of thermally activated processes, an accelerated stress-relaxation test is designed that would cause the expected service rife relaxation to occur in a shorter period. Finally, it is shown that, to simulate a given service condition for all alloys of a common base metal, it is possible to choose a metal system among them that will yield a severe test condition for all alloys in that group. For example, it is shown that the 118°C-33 day stress-relaxation test used for simulating service conditions of 57°C for 40 years of copper C102 (OF copper) would induce as much or more relaxation than would occur in 40 years at 57°C in any copper-based alloy used as a spring material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信