影响Al2O3/ AIN聚合物复合材料导热性能的微观因素的数值分析

Nan Cheng, Xiaoxin Lu, Jiabin Huang, Jibao Lu, Shen Xu, Sun Rong, Jianbin Xu, C. Wong
{"title":"影响Al2O3/ AIN聚合物复合材料导热性能的微观因素的数值分析","authors":"Nan Cheng, Xiaoxin Lu, Jiabin Huang, Jibao Lu, Shen Xu, Sun Rong, Jianbin Xu, C. Wong","doi":"10.1109/ICEPT52650.2021.9568154","DOIUrl":null,"url":null,"abstract":"The thermal interface materials (TIMs) used between a chip and a heat spreader in electronic packaging composes polymeric materials filled with particulate fillers. In this work, we focus on the numerical modeling and design of the particle-laden polymers with high packing density, in which two kinds of particles are mixed. Specifically, $\\mathbf{\\mathrm{A}1_{2}\\mathrm{O}_{3}}$ and AIN, which are commonly used in the electronic packaging industry, are taken as the particulate fillers. Firstly, a series of microstructures of Al2O3/ AIN filled polymer composites with 75 vol% filler volume fraction are generated in GeoDict software with changing the relative content of Al2O3 and AIN. The diameters of the Al2O3 and AIN particles obey orthogonal logarithmic distribution and Gaussian distribution, respectively. Then the thermal conductivities of the structures are simulated under various microscopic factors, such as particle-particle and particle-matrix interfacial thermal resistance, etc. The results are analyzed taken advantage of the orthogonal experimental design, showing that the particle-particle interfacial thermal resistance plays dominant role in the thermal properties of the particulate composites. We demonstrate that such technique can be used to optimize the design of particulate TIMs.","PeriodicalId":184693,"journal":{"name":"2021 22nd International Conference on Electronic Packaging Technology (ICEPT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of the microscopic factors influencing the thermal conductivity of Al2O3/ AIN polymer composites\",\"authors\":\"Nan Cheng, Xiaoxin Lu, Jiabin Huang, Jibao Lu, Shen Xu, Sun Rong, Jianbin Xu, C. Wong\",\"doi\":\"10.1109/ICEPT52650.2021.9568154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thermal interface materials (TIMs) used between a chip and a heat spreader in electronic packaging composes polymeric materials filled with particulate fillers. In this work, we focus on the numerical modeling and design of the particle-laden polymers with high packing density, in which two kinds of particles are mixed. Specifically, $\\\\mathbf{\\\\mathrm{A}1_{2}\\\\mathrm{O}_{3}}$ and AIN, which are commonly used in the electronic packaging industry, are taken as the particulate fillers. Firstly, a series of microstructures of Al2O3/ AIN filled polymer composites with 75 vol% filler volume fraction are generated in GeoDict software with changing the relative content of Al2O3 and AIN. The diameters of the Al2O3 and AIN particles obey orthogonal logarithmic distribution and Gaussian distribution, respectively. Then the thermal conductivities of the structures are simulated under various microscopic factors, such as particle-particle and particle-matrix interfacial thermal resistance, etc. The results are analyzed taken advantage of the orthogonal experimental design, showing that the particle-particle interfacial thermal resistance plays dominant role in the thermal properties of the particulate composites. We demonstrate that such technique can be used to optimize the design of particulate TIMs.\",\"PeriodicalId\":184693,\"journal\":{\"name\":\"2021 22nd International Conference on Electronic Packaging Technology (ICEPT)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 22nd International Conference on Electronic Packaging Technology (ICEPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEPT52650.2021.9568154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Conference on Electronic Packaging Technology (ICEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPT52650.2021.9568154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在电子封装中,用于芯片和散热器之间的热界面材料(TIMs)由填充颗粒填料的聚合物材料组成。在本工作中,我们重点研究了两种颗粒混合的高堆积密度颗粒填充聚合物的数值模拟和设计。具体取电子封装行业常用的$\mathbf{\ mathm {A}1_{2}\ mathm {O}_{3}}$和AIN作为颗粒填料。首先,在GeoDict软件中,通过改变Al2O3和AIN的相对含量,生成了填充量为75%的Al2O3/ AIN填充聚合物复合材料的一系列微观结构。Al2O3和AIN颗粒的直径分别服从正交对数分布和高斯分布。然后模拟了不同微观因素(如颗粒-颗粒和颗粒-基质界面热阻等)下结构的导热系数。采用正交实验设计对实验结果进行了分析,结果表明颗粒-颗粒界面热阻对颗粒复合材料的热性能起主导作用。我们证明,这种技术可以用于优化设计的颗粒TIMs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical analysis of the microscopic factors influencing the thermal conductivity of Al2O3/ AIN polymer composites
The thermal interface materials (TIMs) used between a chip and a heat spreader in electronic packaging composes polymeric materials filled with particulate fillers. In this work, we focus on the numerical modeling and design of the particle-laden polymers with high packing density, in which two kinds of particles are mixed. Specifically, $\mathbf{\mathrm{A}1_{2}\mathrm{O}_{3}}$ and AIN, which are commonly used in the electronic packaging industry, are taken as the particulate fillers. Firstly, a series of microstructures of Al2O3/ AIN filled polymer composites with 75 vol% filler volume fraction are generated in GeoDict software with changing the relative content of Al2O3 and AIN. The diameters of the Al2O3 and AIN particles obey orthogonal logarithmic distribution and Gaussian distribution, respectively. Then the thermal conductivities of the structures are simulated under various microscopic factors, such as particle-particle and particle-matrix interfacial thermal resistance, etc. The results are analyzed taken advantage of the orthogonal experimental design, showing that the particle-particle interfacial thermal resistance plays dominant role in the thermal properties of the particulate composites. We demonstrate that such technique can be used to optimize the design of particulate TIMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信