{"title":"QCA设计中n -可探测性的研究","authors":"B. Sikdar","doi":"10.1109/ATS.2006.73","DOIUrl":null,"url":null,"abstract":"QCA (quantum dot cellular automata) are projected as the replacement of state-of-the-art CMOS designs. The wide acceptance of QCA based design of logic circuits demands analysis and estimation of defect coverage in such circuits. Conventional single stuck-at fault model has been commonly employed to identify the majority of defects at the logic level. However, stuck-at fault model may not fully capture the defects in QCA based designs but approximates the defects in such designs. This work evaluates the effectiveness of such state-of-the-art VLSI test mechanisms, and investigates the possibility of more defect coverage through N-detectability in QCA designs. An experimental set up has been created to study the test quality of such designs subject to a PRPG (pseudo-random-pattern generator). The results shown in the paper point to the fact that the conventional test technique for CMOS designs is also effective in QCA based designs","PeriodicalId":242530,"journal":{"name":"2006 15th Asian Test Symposium","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of N-Detectability in QCA Designs\",\"authors\":\"B. Sikdar\",\"doi\":\"10.1109/ATS.2006.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"QCA (quantum dot cellular automata) are projected as the replacement of state-of-the-art CMOS designs. The wide acceptance of QCA based design of logic circuits demands analysis and estimation of defect coverage in such circuits. Conventional single stuck-at fault model has been commonly employed to identify the majority of defects at the logic level. However, stuck-at fault model may not fully capture the defects in QCA based designs but approximates the defects in such designs. This work evaluates the effectiveness of such state-of-the-art VLSI test mechanisms, and investigates the possibility of more defect coverage through N-detectability in QCA designs. An experimental set up has been created to study the test quality of such designs subject to a PRPG (pseudo-random-pattern generator). The results shown in the paper point to the fact that the conventional test technique for CMOS designs is also effective in QCA based designs\",\"PeriodicalId\":242530,\"journal\":{\"name\":\"2006 15th Asian Test Symposium\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 15th Asian Test Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATS.2006.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 15th Asian Test Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS.2006.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
QCA (quantum dot cellular automata) are projected as the replacement of state-of-the-art CMOS designs. The wide acceptance of QCA based design of logic circuits demands analysis and estimation of defect coverage in such circuits. Conventional single stuck-at fault model has been commonly employed to identify the majority of defects at the logic level. However, stuck-at fault model may not fully capture the defects in QCA based designs but approximates the defects in such designs. This work evaluates the effectiveness of such state-of-the-art VLSI test mechanisms, and investigates the possibility of more defect coverage through N-detectability in QCA designs. An experimental set up has been created to study the test quality of such designs subject to a PRPG (pseudo-random-pattern generator). The results shown in the paper point to the fact that the conventional test technique for CMOS designs is also effective in QCA based designs