{"title":"水分对板上倒装芯片(FCOB)互连耐久性的影响","authors":"J. Okura, A. Dasgupta, J. Caers","doi":"10.1115/imece2000-2256","DOIUrl":null,"url":null,"abstract":"The effect of constant temperature and humidity environments on the durability of interconnects in underfilled Flip-Chip-on-Board (FCOB) assemblies is investigated in this study. Polymeric underfills, used to enhance thermomechanical durability of the interconnects, are found to create new failure modes due to hygromechanical swelling. Based on experimental observations, the failure mechanism is hypothesized to be cracking of intermetallics, which have weakened due to thermal aging. Pseudo 3-D finite element analyses are conducted to quantify the moisture absorption and diffusion through the polymeric underfill, and the resulting hygromechanical viscoplastic stress history. The simulations are combined with accelerated aging tests to assess in-service durability in hot, humid environments. Model predictions are compared with results of accelerated life tests available in the literature.","PeriodicalId":179094,"journal":{"name":"Packaging of Electronic and Photonic Devices","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Moisture on Durability of Flip-Chip-on-Board (FCOB) Interconnects\",\"authors\":\"J. Okura, A. Dasgupta, J. Caers\",\"doi\":\"10.1115/imece2000-2256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of constant temperature and humidity environments on the durability of interconnects in underfilled Flip-Chip-on-Board (FCOB) assemblies is investigated in this study. Polymeric underfills, used to enhance thermomechanical durability of the interconnects, are found to create new failure modes due to hygromechanical swelling. Based on experimental observations, the failure mechanism is hypothesized to be cracking of intermetallics, which have weakened due to thermal aging. Pseudo 3-D finite element analyses are conducted to quantify the moisture absorption and diffusion through the polymeric underfill, and the resulting hygromechanical viscoplastic stress history. The simulations are combined with accelerated aging tests to assess in-service durability in hot, humid environments. Model predictions are compared with results of accelerated life tests available in the literature.\",\"PeriodicalId\":179094,\"journal\":{\"name\":\"Packaging of Electronic and Photonic Devices\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Packaging of Electronic and Photonic Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-2256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Packaging of Electronic and Photonic Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-2256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Moisture on Durability of Flip-Chip-on-Board (FCOB) Interconnects
The effect of constant temperature and humidity environments on the durability of interconnects in underfilled Flip-Chip-on-Board (FCOB) assemblies is investigated in this study. Polymeric underfills, used to enhance thermomechanical durability of the interconnects, are found to create new failure modes due to hygromechanical swelling. Based on experimental observations, the failure mechanism is hypothesized to be cracking of intermetallics, which have weakened due to thermal aging. Pseudo 3-D finite element analyses are conducted to quantify the moisture absorption and diffusion through the polymeric underfill, and the resulting hygromechanical viscoplastic stress history. The simulations are combined with accelerated aging tests to assess in-service durability in hot, humid environments. Model predictions are compared with results of accelerated life tests available in the literature.