通过机器学习分析,使用扩展的纳米电子条形码粒子库进行多路分子生物标志物分析

Jianye Sui, Pengfei Xie, Zhongtian Lin, M. Javanmard
{"title":"通过机器学习分析,使用扩展的纳米电子条形码粒子库进行多路分子生物标志物分析","authors":"Jianye Sui, Pengfei Xie, Zhongtian Lin, M. Javanmard","doi":"10.1109/MEMSYS.2018.8346584","DOIUrl":null,"url":null,"abstract":"Electronically barcoded micro-particles have been demonstrated for use in various multiplexed molecular biomarker assays. Traditional optical and plasmonic methods for barcoding are capable of high throughput and high sensitivity, but require bulky instrumentation for readout, which cannot be easily made into a portable device. Previously, we reported a novel impedance based barcoding technique by fabricating tunable nano-capacitors on micro-particle surfaces thus modulating the overall particle impedance. In this work, we expand the library of barcoded particles using atomic layer deposited oxides of varying thickness and dielectric permittivity and study the effect of thickness and dielectric permittivity using multi-frequency impedance flow cytometry and utilize machine learning to classify different particle barcodes.","PeriodicalId":400754,"journal":{"name":"2018 IEEE Micro Electro Mechanical Systems (MEMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiplexed molecular biomarker analysis using an expanded library of nanoelectronically barcoded particles enabled through machine learning analysis\",\"authors\":\"Jianye Sui, Pengfei Xie, Zhongtian Lin, M. Javanmard\",\"doi\":\"10.1109/MEMSYS.2018.8346584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronically barcoded micro-particles have been demonstrated for use in various multiplexed molecular biomarker assays. Traditional optical and plasmonic methods for barcoding are capable of high throughput and high sensitivity, but require bulky instrumentation for readout, which cannot be easily made into a portable device. Previously, we reported a novel impedance based barcoding technique by fabricating tunable nano-capacitors on micro-particle surfaces thus modulating the overall particle impedance. In this work, we expand the library of barcoded particles using atomic layer deposited oxides of varying thickness and dielectric permittivity and study the effect of thickness and dielectric permittivity using multi-frequency impedance flow cytometry and utilize machine learning to classify different particle barcodes.\",\"PeriodicalId\":400754,\"journal\":{\"name\":\"2018 IEEE Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2018.8346584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2018.8346584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电子条形码微粒子已被证明用于各种多重分子生物标志物测定。传统的光学和等离子体条形码方法具有高通量和高灵敏度的特点,但需要笨重的读出仪器,不易制成便携式设备。在此之前,我们报道了一种新的基于阻抗的条形码技术,该技术通过在微粒子表面制造可调谐的纳米电容器来调节粒子的整体阻抗。在这项工作中,我们使用不同厚度和介电常数的原子层沉积氧化物扩展了条形码粒子库,并使用多频阻抗流式细胞术研究了厚度和介电常数的影响,并利用机器学习对不同颗粒条形码进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplexed molecular biomarker analysis using an expanded library of nanoelectronically barcoded particles enabled through machine learning analysis
Electronically barcoded micro-particles have been demonstrated for use in various multiplexed molecular biomarker assays. Traditional optical and plasmonic methods for barcoding are capable of high throughput and high sensitivity, but require bulky instrumentation for readout, which cannot be easily made into a portable device. Previously, we reported a novel impedance based barcoding technique by fabricating tunable nano-capacitors on micro-particle surfaces thus modulating the overall particle impedance. In this work, we expand the library of barcoded particles using atomic layer deposited oxides of varying thickness and dielectric permittivity and study the effect of thickness and dielectric permittivity using multi-frequency impedance flow cytometry and utilize machine learning to classify different particle barcodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信