通过深度学习自动套接字异常检测

Nidhi Agrawal, Min Yang, Constantinos Xanthopoulos, Vijayakumar Thangamariappan, Joe Xiao, Chee-Wah Ho, Keith Schaub, Ira Leventhal
{"title":"通过深度学习自动套接字异常检测","authors":"Nidhi Agrawal, Min Yang, Constantinos Xanthopoulos, Vijayakumar Thangamariappan, Joe Xiao, Chee-Wah Ho, Keith Schaub, Ira Leventhal","doi":"10.1109/ITC44778.2020.9325269","DOIUrl":null,"url":null,"abstract":"The paper will demonstrate the application of Deep Learning (DL) for the detection of defective tester sockets. The proposed methodology relies on images like those used for manual or rule-based inspection, commonly collected using Automated Optical Inspection (AOI) equipment. This work represents a practical example of the use of Machine Learning for achieving improved inspection-quality outcomes at a lower cost. The experimental evaluation of the proposed methodology was performed on production set of collected socket images.","PeriodicalId":251504,"journal":{"name":"2020 IEEE International Test Conference (ITC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Socket Anomaly Detection through Deep Learning\",\"authors\":\"Nidhi Agrawal, Min Yang, Constantinos Xanthopoulos, Vijayakumar Thangamariappan, Joe Xiao, Chee-Wah Ho, Keith Schaub, Ira Leventhal\",\"doi\":\"10.1109/ITC44778.2020.9325269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper will demonstrate the application of Deep Learning (DL) for the detection of defective tester sockets. The proposed methodology relies on images like those used for manual or rule-based inspection, commonly collected using Automated Optical Inspection (AOI) equipment. This work represents a practical example of the use of Machine Learning for achieving improved inspection-quality outcomes at a lower cost. The experimental evaluation of the proposed methodology was performed on production set of collected socket images.\",\"PeriodicalId\":251504,\"journal\":{\"name\":\"2020 IEEE International Test Conference (ITC)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Test Conference (ITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC44778.2020.9325269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC44778.2020.9325269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将演示深度学习(DL)在检测缺陷测试仪插座中的应用。所提出的方法依赖于人工或基于规则的检查所使用的图像,通常使用自动光学检查(AOI)设备收集。这项工作代表了使用机器学习以较低成本实现改进检测质量结果的实际示例。在采集的套接字图像生成集上对所提方法进行了实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Socket Anomaly Detection through Deep Learning
The paper will demonstrate the application of Deep Learning (DL) for the detection of defective tester sockets. The proposed methodology relies on images like those used for manual or rule-based inspection, commonly collected using Automated Optical Inspection (AOI) equipment. This work represents a practical example of the use of Machine Learning for achieving improved inspection-quality outcomes at a lower cost. The experimental evaluation of the proposed methodology was performed on production set of collected socket images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信