高效测试模式生成的机器智能

Soham Roy, S. Millican, V. Agrawal
{"title":"高效测试模式生成的机器智能","authors":"Soham Roy, S. Millican, V. Agrawal","doi":"10.1109/ITC44778.2020.9325250","DOIUrl":null,"url":null,"abstract":"This study examines machine intelligence’s (MI) ability to enhance automatic test pattern generation (ATPG) by reducing backtracks. In lieu of a conventional heuristic to decide backtracing directions, this study uses an artificial neural network (ANN) trained through PODEM on hard-to-detect faults. Training data contains topological data, testability measures, and backtracking history, and when trained on this data, the ANN guides backtracing in directions unlikely to backtrack. When trained with a single feature (e.g., COP), ATPG performance is comparable to conventional PODEM, and using multiple features further reduces backtracks and ATPG CPU time.","PeriodicalId":251504,"journal":{"name":"2020 IEEE International Test Conference (ITC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Machine Intelligence for Efficient Test Pattern Generation\",\"authors\":\"Soham Roy, S. Millican, V. Agrawal\",\"doi\":\"10.1109/ITC44778.2020.9325250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines machine intelligence’s (MI) ability to enhance automatic test pattern generation (ATPG) by reducing backtracks. In lieu of a conventional heuristic to decide backtracing directions, this study uses an artificial neural network (ANN) trained through PODEM on hard-to-detect faults. Training data contains topological data, testability measures, and backtracking history, and when trained on this data, the ANN guides backtracing in directions unlikely to backtrack. When trained with a single feature (e.g., COP), ATPG performance is comparable to conventional PODEM, and using multiple features further reduces backtracks and ATPG CPU time.\",\"PeriodicalId\":251504,\"journal\":{\"name\":\"2020 IEEE International Test Conference (ITC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Test Conference (ITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC44778.2020.9325250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC44778.2020.9325250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本研究考察了机器智能(MI)通过减少回溯来增强自动测试模式生成(ATPG)的能力。代替传统的启发式方法来决定回溯方向,本研究使用了通过PODEM训练的人工神经网络(ANN)来处理难以检测的故障。训练数据包含拓扑数据、可测试性度量和回溯历史,当在这些数据上进行训练时,人工神经网络引导回溯到不太可能回溯的方向。当使用单个特征(例如COP)进行训练时,ATPG的性能与传统的PODEM相当,并且使用多个特征进一步减少了回溯和ATPG CPU时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Intelligence for Efficient Test Pattern Generation
This study examines machine intelligence’s (MI) ability to enhance automatic test pattern generation (ATPG) by reducing backtracks. In lieu of a conventional heuristic to decide backtracing directions, this study uses an artificial neural network (ANN) trained through PODEM on hard-to-detect faults. Training data contains topological data, testability measures, and backtracking history, and when trained on this data, the ANN guides backtracing in directions unlikely to backtrack. When trained with a single feature (e.g., COP), ATPG performance is comparable to conventional PODEM, and using multiple features further reduces backtracks and ATPG CPU time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信