M. Le Gallo, A. Sebastian, D. Krebs, M. Stanisavljevic, E. Eleftheriou
{"title":"PCM器件中I-V漂移的完全时间/温度依赖性","authors":"M. Le Gallo, A. Sebastian, D. Krebs, M. Stanisavljevic, E. Eleftheriou","doi":"10.1109/IRPS.2016.7574617","DOIUrl":null,"url":null,"abstract":"Phase-change memory (PCM) devices are expected to play a key role in future computing systems as both memory and computing elements. Hence, a comprehensive understanding of the change in the current/voltage (I-V) characteristics of these devices with time and temperature is of considerable importance. Here, we present a unified drift model able to predict the I-V characteristics at any instance in time and at any temperature. The model was validated on large sets of experimental data for an extensive range of time (10 orders of magnitude) and temperatures (180-400 K), different phase-change materials and a collection of 4k cells from a PCM chip.","PeriodicalId":172129,"journal":{"name":"2016 IEEE International Reliability Physics Symposium (IRPS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The complete time/temperature dependence of I-V drift in PCM devices\",\"authors\":\"M. Le Gallo, A. Sebastian, D. Krebs, M. Stanisavljevic, E. Eleftheriou\",\"doi\":\"10.1109/IRPS.2016.7574617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase-change memory (PCM) devices are expected to play a key role in future computing systems as both memory and computing elements. Hence, a comprehensive understanding of the change in the current/voltage (I-V) characteristics of these devices with time and temperature is of considerable importance. Here, we present a unified drift model able to predict the I-V characteristics at any instance in time and at any temperature. The model was validated on large sets of experimental data for an extensive range of time (10 orders of magnitude) and temperatures (180-400 K), different phase-change materials and a collection of 4k cells from a PCM chip.\",\"PeriodicalId\":172129,\"journal\":{\"name\":\"2016 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS.2016.7574617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2016.7574617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The complete time/temperature dependence of I-V drift in PCM devices
Phase-change memory (PCM) devices are expected to play a key role in future computing systems as both memory and computing elements. Hence, a comprehensive understanding of the change in the current/voltage (I-V) characteristics of these devices with time and temperature is of considerable importance. Here, we present a unified drift model able to predict the I-V characteristics at any instance in time and at any temperature. The model was validated on large sets of experimental data for an extensive range of time (10 orders of magnitude) and temperatures (180-400 K), different phase-change materials and a collection of 4k cells from a PCM chip.