Shuou Nomura, K. Sankaralingam, Ranganathan Sankaralingam
{"title":"一种用于时序推测逻辑仿真的快速高精度路径延迟仿真框架","authors":"Shuou Nomura, K. Sankaralingam, Ranganathan Sankaralingam","doi":"10.1109/TEST.2010.5699267","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel path-delay fault emulation technique called Replay. We specifically show it allows FPGA emulation of digital ICs that adopt timing-speculation techniques. For each flip-flop, Replay builds a timing-error predictor based on timing-speculation's aggressive clock period. We use a heuristic which replicates the combination logic and uses path delays to determine which paths will be excited based on the aggressive clock period. The timing-error prediction accuracy is more than 99% for a set of real workloads on the OpenRISC processor and the FPGA emulation speed shows practically no slowdown. We also demonstrate that Replay can evaluate the impact of voltage-drop timing-faults. This fast and accurate timing-error prediction enables practical emulation of timing-speculation and quantitative analysis early in the design-cycle.","PeriodicalId":265156,"journal":{"name":"2010 IEEE International Test Conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A fast and highly accurate path delay emulation framework for logic-emulation of timing speculation\",\"authors\":\"Shuou Nomura, K. Sankaralingam, Ranganathan Sankaralingam\",\"doi\":\"10.1109/TEST.2010.5699267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel path-delay fault emulation technique called Replay. We specifically show it allows FPGA emulation of digital ICs that adopt timing-speculation techniques. For each flip-flop, Replay builds a timing-error predictor based on timing-speculation's aggressive clock period. We use a heuristic which replicates the combination logic and uses path delays to determine which paths will be excited based on the aggressive clock period. The timing-error prediction accuracy is more than 99% for a set of real workloads on the OpenRISC processor and the FPGA emulation speed shows practically no slowdown. We also demonstrate that Replay can evaluate the impact of voltage-drop timing-faults. This fast and accurate timing-error prediction enables practical emulation of timing-speculation and quantitative analysis early in the design-cycle.\",\"PeriodicalId\":265156,\"journal\":{\"name\":\"2010 IEEE International Test Conference\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Test Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.2010.5699267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2010.5699267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fast and highly accurate path delay emulation framework for logic-emulation of timing speculation
This paper proposes a novel path-delay fault emulation technique called Replay. We specifically show it allows FPGA emulation of digital ICs that adopt timing-speculation techniques. For each flip-flop, Replay builds a timing-error predictor based on timing-speculation's aggressive clock period. We use a heuristic which replicates the combination logic and uses path delays to determine which paths will be excited based on the aggressive clock period. The timing-error prediction accuracy is more than 99% for a set of real workloads on the OpenRISC processor and the FPGA emulation speed shows practically no slowdown. We also demonstrate that Replay can evaluate the impact of voltage-drop timing-faults. This fast and accurate timing-error prediction enables practical emulation of timing-speculation and quantitative analysis early in the design-cycle.