低功耗电子超级电容器用无粘结剂TiO2纳米颗粒电极的制备

Shalu Rani, Nagesh Kumar, Abhinav Tandon, Yogesh Sharma
{"title":"低功耗电子超级电容器用无粘结剂TiO2纳米颗粒电极的制备","authors":"Shalu Rani, Nagesh Kumar, Abhinav Tandon, Yogesh Sharma","doi":"10.1109/icee50728.2020.9776669","DOIUrl":null,"url":null,"abstract":"In the present work, supercapacitor performance of binder-free TiO2 nanoparticles electrodes, fabricated via a facile, cost effective electrophoretic deposition (EPD) technique has been analyzed. To enhance the electrical conductivity and adhesion of coated TiO2 nanoparticles thin film over the graphite substrate, an optimized amount (2 wt. %) of multiwalled carbon nanotubes (MWCNTs) is added into the dispersion of TiO2 nanoparticles. Uniform and smooth surface morphology of fabricated electrodes has been analyzed using field emission scanning electron microscope (FESEM). The electrochemical analysis of the electrodes is done in a three-electrode configuration cell with 2M KOH electrolyte through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Electrochemical analysis reveals that the best optimized TiO2 nanoparticles electrode having 2 wt.% MWCNTs displays an enhanced specific capacitance of $320 \\pm 5$ Fg−1 at 1 Ag−1 current density. The fabricated electrode displays a higher diffusion coefficient $\\sim 1.45\\times 10^{-10}\\text{cm}^{2}\\mathrm{s}^{-1}$ and a small relaxation time constant $(\\tau_{\\mathrm{o}}=89\\ \\text{ms})$ in 2M KOH. Moreover, fabricated TiO2 nanoparticles electrode maintains 87 % capacity retention after 1000 charge/discharge cycles. We believe this study would be helpful in the designing of practical supercapacitor devices for low-power electronic applications.","PeriodicalId":436884,"journal":{"name":"2020 5th IEEE International Conference on Emerging Electronics (ICEE)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Binder-free TiO2 Nanoparticle Electrodes for Supercapacitor in Low-Power Electronic Applications\",\"authors\":\"Shalu Rani, Nagesh Kumar, Abhinav Tandon, Yogesh Sharma\",\"doi\":\"10.1109/icee50728.2020.9776669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, supercapacitor performance of binder-free TiO2 nanoparticles electrodes, fabricated via a facile, cost effective electrophoretic deposition (EPD) technique has been analyzed. To enhance the electrical conductivity and adhesion of coated TiO2 nanoparticles thin film over the graphite substrate, an optimized amount (2 wt. %) of multiwalled carbon nanotubes (MWCNTs) is added into the dispersion of TiO2 nanoparticles. Uniform and smooth surface morphology of fabricated electrodes has been analyzed using field emission scanning electron microscope (FESEM). The electrochemical analysis of the electrodes is done in a three-electrode configuration cell with 2M KOH electrolyte through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Electrochemical analysis reveals that the best optimized TiO2 nanoparticles electrode having 2 wt.% MWCNTs displays an enhanced specific capacitance of $320 \\\\pm 5$ Fg−1 at 1 Ag−1 current density. The fabricated electrode displays a higher diffusion coefficient $\\\\sim 1.45\\\\times 10^{-10}\\\\text{cm}^{2}\\\\mathrm{s}^{-1}$ and a small relaxation time constant $(\\\\tau_{\\\\mathrm{o}}=89\\\\ \\\\text{ms})$ in 2M KOH. Moreover, fabricated TiO2 nanoparticles electrode maintains 87 % capacity retention after 1000 charge/discharge cycles. We believe this study would be helpful in the designing of practical supercapacitor devices for low-power electronic applications.\",\"PeriodicalId\":436884,\"journal\":{\"name\":\"2020 5th IEEE International Conference on Emerging Electronics (ICEE)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th IEEE International Conference on Emerging Electronics (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icee50728.2020.9776669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icee50728.2020.9776669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本工作中,通过简单、经济的电泳沉积(EPD)技术制备了无粘结剂的TiO2纳米颗粒电极,并对其超级电容器性能进行了分析。为了提高在石墨衬底上涂覆的TiO2纳米粒子薄膜的导电性和附着力,最佳用量(2wt。 %) of multiwalled carbon nanotubes (MWCNTs) is added into the dispersion of TiO2 nanoparticles. Uniform and smooth surface morphology of fabricated electrodes has been analyzed using field emission scanning electron microscope (FESEM). The electrochemical analysis of the electrodes is done in a three-electrode configuration cell with 2M KOH electrolyte through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Electrochemical analysis reveals that the best optimized TiO2 nanoparticles electrode having 2 wt.% MWCNTs displays an enhanced specific capacitance of $320 \pm 5$ Fg−1 at 1 Ag−1 current density. The fabricated electrode displays a higher diffusion coefficient $\sim 1.45\times 10^{-10}\text{cm}^{2}\mathrm{s}^{-1}$ and a small relaxation time constant $(\tau_{\mathrm{o}}=89\ \text{ms})$ in 2M KOH. Moreover, fabricated TiO2 nanoparticles electrode maintains 87 % capacity retention after 1000 charge/discharge cycles. We believe this study would be helpful in the designing of practical supercapacitor devices for low-power electronic applications.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of Binder-free TiO2 Nanoparticle Electrodes for Supercapacitor in Low-Power Electronic Applications
In the present work, supercapacitor performance of binder-free TiO2 nanoparticles electrodes, fabricated via a facile, cost effective electrophoretic deposition (EPD) technique has been analyzed. To enhance the electrical conductivity and adhesion of coated TiO2 nanoparticles thin film over the graphite substrate, an optimized amount (2 wt. %) of multiwalled carbon nanotubes (MWCNTs) is added into the dispersion of TiO2 nanoparticles. Uniform and smooth surface morphology of fabricated electrodes has been analyzed using field emission scanning electron microscope (FESEM). The electrochemical analysis of the electrodes is done in a three-electrode configuration cell with 2M KOH electrolyte through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Electrochemical analysis reveals that the best optimized TiO2 nanoparticles electrode having 2 wt.% MWCNTs displays an enhanced specific capacitance of $320 \pm 5$ Fg−1 at 1 Ag−1 current density. The fabricated electrode displays a higher diffusion coefficient $\sim 1.45\times 10^{-10}\text{cm}^{2}\mathrm{s}^{-1}$ and a small relaxation time constant $(\tau_{\mathrm{o}}=89\ \text{ms})$ in 2M KOH. Moreover, fabricated TiO2 nanoparticles electrode maintains 87 % capacity retention after 1000 charge/discharge cycles. We believe this study would be helpful in the designing of practical supercapacitor devices for low-power electronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信