嵌入式系统中实时操作系统可靠性分析

Dario Mamone, A. Bosio, A. Savino, S. Hamdioui, M. Rebaudengo
{"title":"嵌入式系统中实时操作系统可靠性分析","authors":"Dario Mamone, A. Bosio, A. Savino, S. Hamdioui, M. Rebaudengo","doi":"10.1109/DFT50435.2020.9250861","DOIUrl":null,"url":null,"abstract":"Nowadays, the reliability has become one of the main issues for safety-critical embedded systems, like automotive, aerospace and avionic. In an embedded system, the full system stack usually includes, between the hardware layer and the software/application layer, a middle layer composed by the Operating System (OS) and the middleware. Most of the time, in the literature only the application-layer is considered during the reliability analysis. This is due to the fact that middle layer short execution time makes the probability of a fault affecting it much lower compared to the application-level. Nevertheless, middle layer data structures lifespan is equivalent to the application layer ones. Moreover, all the times a hardware fault propagates to the middle-layer as an error, and especially to the OS, its impact can be expected to be potentially catastrophic. The aim of this work is to study the reliability of a Real-Time Operating System (RTOS) affected by Single Event Upset (SEU) faults. The methodology targets the most relevant variables and data structures of FreeRTOS analyzed through a software-based fault injection. Results show the ability to highlight the criticality in the OS fault tolerance, in terms of system integrity, data integrity and the overall inherent resiliency to faults, potentially leading to selective hardening of the OS.","PeriodicalId":340119,"journal":{"name":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the Analysis of Real-time Operating System Reliability in Embedded Systems\",\"authors\":\"Dario Mamone, A. Bosio, A. Savino, S. Hamdioui, M. Rebaudengo\",\"doi\":\"10.1109/DFT50435.2020.9250861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the reliability has become one of the main issues for safety-critical embedded systems, like automotive, aerospace and avionic. In an embedded system, the full system stack usually includes, between the hardware layer and the software/application layer, a middle layer composed by the Operating System (OS) and the middleware. Most of the time, in the literature only the application-layer is considered during the reliability analysis. This is due to the fact that middle layer short execution time makes the probability of a fault affecting it much lower compared to the application-level. Nevertheless, middle layer data structures lifespan is equivalent to the application layer ones. Moreover, all the times a hardware fault propagates to the middle-layer as an error, and especially to the OS, its impact can be expected to be potentially catastrophic. The aim of this work is to study the reliability of a Real-Time Operating System (RTOS) affected by Single Event Upset (SEU) faults. The methodology targets the most relevant variables and data structures of FreeRTOS analyzed through a software-based fault injection. Results show the ability to highlight the criticality in the OS fault tolerance, in terms of system integrity, data integrity and the overall inherent resiliency to faults, potentially leading to selective hardening of the OS.\",\"PeriodicalId\":340119,\"journal\":{\"name\":\"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT50435.2020.9250861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT50435.2020.9250861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

目前,可靠性已成为汽车、航空航天和航空电子等安全关键型嵌入式系统的主要问题之一。在嵌入式系统中,完整的系统堆栈通常包括在硬件层和软件/应用层之间,由操作系统(OS)和中间件组成的中间层。在大多数情况下,文献中在可靠性分析中只考虑应用层。这是由于中间层较短的执行时间使得与应用程序级别相比,影响中间层的故障概率要低得多。然而,中间层数据结构的生命周期与应用层数据结构的生命周期相同。此外,每当硬件故障作为错误传播到中间层,特别是传播到操作系统时,其影响都可能是灾难性的。本文的目的是研究单事件干扰(SEU)故障对实时操作系统(RTOS)可靠性的影响。该方法针对FreeRTOS中最相关的变量和数据结构,通过基于软件的故障注入进行分析。结果显示,在系统完整性、数据完整性和对故障的整体固有弹性方面,能够突出操作系统容错的重要性,这可能导致操作系统的选择性硬化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Analysis of Real-time Operating System Reliability in Embedded Systems
Nowadays, the reliability has become one of the main issues for safety-critical embedded systems, like automotive, aerospace and avionic. In an embedded system, the full system stack usually includes, between the hardware layer and the software/application layer, a middle layer composed by the Operating System (OS) and the middleware. Most of the time, in the literature only the application-layer is considered during the reliability analysis. This is due to the fact that middle layer short execution time makes the probability of a fault affecting it much lower compared to the application-level. Nevertheless, middle layer data structures lifespan is equivalent to the application layer ones. Moreover, all the times a hardware fault propagates to the middle-layer as an error, and especially to the OS, its impact can be expected to be potentially catastrophic. The aim of this work is to study the reliability of a Real-Time Operating System (RTOS) affected by Single Event Upset (SEU) faults. The methodology targets the most relevant variables and data structures of FreeRTOS analyzed through a software-based fault injection. Results show the ability to highlight the criticality in the OS fault tolerance, in terms of system integrity, data integrity and the overall inherent resiliency to faults, potentially leading to selective hardening of the OS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信