超低功耗,恶劣环境SOI-CMOS设计基于温度传感器的阈值检测和唤醒IC

M. Assaad, P. Gérard, L. Francis, D. Flandre
{"title":"超低功耗,恶劣环境SOI-CMOS设计基于温度传感器的阈值检测和唤醒IC","authors":"M. Assaad, P. Gérard, L. Francis, D. Flandre","doi":"10.1109/SOI.2010.5641369","DOIUrl":null,"url":null,"abstract":"An ultra-low-power temperature-sensor-based silicon-on-insulator (SOI) CMOS Integrated Circuit (IC) for harsh environment application is presented. It first detects a temperature threshold, secondly generates a wake-up signal that turns on a data-acquisition microprocessor once the threshold has been detected and thirdly operates as a temperature sensor in a harsh environment while being wired to the microprocessor kept in a safe area. The IC is continuously on for a very long period of time and is required to be powered from a ultrathin battery type, hence must be an ultra low power design. It includes a diode-based temperature sensor, a quasi-temperature independent voltage generator, a comparator and a power switch to limit the microprocessor stand-by consumption. Since our application is mainly for harsh environment (e.g. high temperature, radiation), the chip has been designed using the 1-µm high-temperature SOI-CMOS XFAB technology; it occupies an area of 560µm×165µm. The biasing current and power dissipation are 4.12 µA and 20.6 µW respectively at a supply voltage of 5V and temperature of 27°C, according to the post-layout transistor level simulation results.","PeriodicalId":227302,"journal":{"name":"2010 IEEE International SOI Conference (SOI)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Ultra low power, harsh environment SOI-CMOS design of temperature sensor based threshold detection and wake-up IC\",\"authors\":\"M. Assaad, P. Gérard, L. Francis, D. Flandre\",\"doi\":\"10.1109/SOI.2010.5641369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ultra-low-power temperature-sensor-based silicon-on-insulator (SOI) CMOS Integrated Circuit (IC) for harsh environment application is presented. It first detects a temperature threshold, secondly generates a wake-up signal that turns on a data-acquisition microprocessor once the threshold has been detected and thirdly operates as a temperature sensor in a harsh environment while being wired to the microprocessor kept in a safe area. The IC is continuously on for a very long period of time and is required to be powered from a ultrathin battery type, hence must be an ultra low power design. It includes a diode-based temperature sensor, a quasi-temperature independent voltage generator, a comparator and a power switch to limit the microprocessor stand-by consumption. Since our application is mainly for harsh environment (e.g. high temperature, radiation), the chip has been designed using the 1-µm high-temperature SOI-CMOS XFAB technology; it occupies an area of 560µm×165µm. The biasing current and power dissipation are 4.12 µA and 20.6 µW respectively at a supply voltage of 5V and temperature of 27°C, according to the post-layout transistor level simulation results.\",\"PeriodicalId\":227302,\"journal\":{\"name\":\"2010 IEEE International SOI Conference (SOI)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International SOI Conference (SOI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOI.2010.5641369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International SOI Conference (SOI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOI.2010.5641369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种适用于恶劣环境的超低功耗绝缘体上硅(SOI) CMOS集成电路。它首先检测温度阈值,其次产生唤醒信号,一旦检测到阈值就打开数据采集微处理器,第三在恶劣环境中作为温度传感器工作,同时连接到安全区域的微处理器。集成电路可以连续工作很长一段时间,并且需要使用超薄电池供电,因此必须采用超低功耗设计。它包括一个基于二极管的温度传感器,一个准温度无关电压发生器,一个比较器和一个电源开关,以限制微处理器待机消耗。由于我们的应用主要针对恶劣环境(例如高温,辐射),因此芯片采用1 μ m高温SOI-CMOS XFAB技术设计;占地面积560µm×165µm。根据布局后晶体管级仿真结果,在电源电压为5V、温度为27℃时,偏置电流和功耗分别为4.12µA和20.6µW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra low power, harsh environment SOI-CMOS design of temperature sensor based threshold detection and wake-up IC
An ultra-low-power temperature-sensor-based silicon-on-insulator (SOI) CMOS Integrated Circuit (IC) for harsh environment application is presented. It first detects a temperature threshold, secondly generates a wake-up signal that turns on a data-acquisition microprocessor once the threshold has been detected and thirdly operates as a temperature sensor in a harsh environment while being wired to the microprocessor kept in a safe area. The IC is continuously on for a very long period of time and is required to be powered from a ultrathin battery type, hence must be an ultra low power design. It includes a diode-based temperature sensor, a quasi-temperature independent voltage generator, a comparator and a power switch to limit the microprocessor stand-by consumption. Since our application is mainly for harsh environment (e.g. high temperature, radiation), the chip has been designed using the 1-µm high-temperature SOI-CMOS XFAB technology; it occupies an area of 560µm×165µm. The biasing current and power dissipation are 4.12 µA and 20.6 µW respectively at a supply voltage of 5V and temperature of 27°C, according to the post-layout transistor level simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信