基于SIFT特征的FastSLAM在线视觉运动估计

T. Barfoot
{"title":"基于SIFT特征的FastSLAM在线视觉运动估计","authors":"T. Barfoot","doi":"10.1109/IROS.2005.1545444","DOIUrl":null,"url":null,"abstract":"This paper describes a technique to estimate the 3D motion of a vehicle using odometric sensors and a stereo camera. The algorithm falls into the category of simultaneous localization and mapping as a large database of visual landmarks is created. The algorithm has been field tested online on a rover traversing loose terrain in the presence of obstacles. The resulting position estimation errors are between 0.5% and 4% of distance travelled, a significant improvement over odometry alone.","PeriodicalId":189219,"journal":{"name":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"Online visual motion estimation using FastSLAM with SIFT features\",\"authors\":\"T. Barfoot\",\"doi\":\"10.1109/IROS.2005.1545444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a technique to estimate the 3D motion of a vehicle using odometric sensors and a stereo camera. The algorithm falls into the category of simultaneous localization and mapping as a large database of visual landmarks is created. The algorithm has been field tested online on a rover traversing loose terrain in the presence of obstacles. The resulting position estimation errors are between 0.5% and 4% of distance travelled, a significant improvement over odometry alone.\",\"PeriodicalId\":189219,\"journal\":{\"name\":\"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2005.1545444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2005.1545444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

摘要

本文描述了一种利用里程传感器和立体摄像机来估计车辆三维运动的技术。该算法属于同时定位和映射的范畴,因为它创建了一个大型的视觉地标数据库。该算法已经在一辆漫游车上进行了现场在线测试,该漫游车在有障碍物的情况下穿过松散的地形。由此产生的位置估计误差在行进距离的0.5%到4%之间,与单独的里程计相比,这是一个显着的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online visual motion estimation using FastSLAM with SIFT features
This paper describes a technique to estimate the 3D motion of a vehicle using odometric sensors and a stereo camera. The algorithm falls into the category of simultaneous localization and mapping as a large database of visual landmarks is created. The algorithm has been field tested online on a rover traversing loose terrain in the presence of obstacles. The resulting position estimation errors are between 0.5% and 4% of distance travelled, a significant improvement over odometry alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信