{"title":"聚合物/金属界面断裂韧性的水分降解工程模型","authors":"T. P. Ferguson, J. Qu","doi":"10.1109/ISAPM.2005.1432093","DOIUrl":null,"url":null,"abstract":"Based on interfacial fracture mechanics and the hydrophobicity of the interface, en engineering model was developed in this paper. Using this model, one can predicted the degradation of interfacial fracture toughness of a polymer/metal interface once the moisture concentration near the interface is known.","PeriodicalId":181674,"journal":{"name":"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An engineering model for moisture degradation of polymer/metal interfacial fracture toughness\",\"authors\":\"T. P. Ferguson, J. Qu\",\"doi\":\"10.1109/ISAPM.2005.1432093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on interfacial fracture mechanics and the hydrophobicity of the interface, en engineering model was developed in this paper. Using this model, one can predicted the degradation of interfacial fracture toughness of a polymer/metal interface once the moisture concentration near the interface is known.\",\"PeriodicalId\":181674,\"journal\":{\"name\":\"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAPM.2005.1432093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAPM.2005.1432093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An engineering model for moisture degradation of polymer/metal interfacial fracture toughness
Based on interfacial fracture mechanics and the hydrophobicity of the interface, en engineering model was developed in this paper. Using this model, one can predicted the degradation of interfacial fracture toughness of a polymer/metal interface once the moisture concentration near the interface is known.