扩展单端图形存储器数据速率的挑战

S. Mukherjee, D. Oh, A. Vaidyanath, D. Dressler, A. Sendhil
{"title":"扩展单端图形存储器数据速率的挑战","authors":"S. Mukherjee, D. Oh, A. Vaidyanath, D. Dressler, A. Sendhil","doi":"10.1109/EPEPS.2012.6457838","DOIUrl":null,"url":null,"abstract":"While the need for higher graphics memory bandwidth continues to grow, it is evident that owing to the multitude of challenges in single ended signaling, pushing data rates beyond 6 Gbps is exceedingly difficult. To isolate, quantify and combat the most important factors that limit the performance of modern high speed single ended systems, a high speed GDDR5 memory system (link width: ×32) has been designed using a Rambus prototype test-chip (TSMC 40 nm process node) and a leading single ended signaling graphics GDDR5 DRAM. Critical challenges faced in scaling the data rates up to 8 Gbps are presented and the varying impact of these challenges on the system margin is shown for increasing speeds. An example of a chip-to-chip system between two prototype test chips, that mitigates these performance limiting determinants, is shown to operate robustly at data rates beyond 8 Gbps. The ingredients of this system are likely techniques for the future graphics memories.","PeriodicalId":188377,"journal":{"name":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Challenges in extending single-ended graphics memory data rates\",\"authors\":\"S. Mukherjee, D. Oh, A. Vaidyanath, D. Dressler, A. Sendhil\",\"doi\":\"10.1109/EPEPS.2012.6457838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the need for higher graphics memory bandwidth continues to grow, it is evident that owing to the multitude of challenges in single ended signaling, pushing data rates beyond 6 Gbps is exceedingly difficult. To isolate, quantify and combat the most important factors that limit the performance of modern high speed single ended systems, a high speed GDDR5 memory system (link width: ×32) has been designed using a Rambus prototype test-chip (TSMC 40 nm process node) and a leading single ended signaling graphics GDDR5 DRAM. Critical challenges faced in scaling the data rates up to 8 Gbps are presented and the varying impact of these challenges on the system margin is shown for increasing speeds. An example of a chip-to-chip system between two prototype test chips, that mitigates these performance limiting determinants, is shown to operate robustly at data rates beyond 8 Gbps. The ingredients of this system are likely techniques for the future graphics memories.\",\"PeriodicalId\":188377,\"journal\":{\"name\":\"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2012.6457838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2012.6457838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

虽然对更高图形内存带宽的需求持续增长,但很明显,由于单端信号的众多挑战,将数据速率提高到6gbps以上是非常困难的。为了隔离、量化和对抗限制现代高速单端系统性能的最重要因素,采用Rambus原型测试芯片(台积电40纳米工艺节点)和领先的单端信号图形GDDR5 DRAM设计了高速GDDR5存储系统(链路宽度:×32)。提出了将数据速率扩展到8 Gbps所面临的关键挑战,并显示了随着速度的增加,这些挑战对系统边际的不同影响。两个原型测试芯片之间的芯片对芯片系统的一个例子,减轻了这些性能限制因素,显示出在超过8 Gbps的数据速率下可靠地运行。这个系统的成分很可能是未来图形存储器的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenges in extending single-ended graphics memory data rates
While the need for higher graphics memory bandwidth continues to grow, it is evident that owing to the multitude of challenges in single ended signaling, pushing data rates beyond 6 Gbps is exceedingly difficult. To isolate, quantify and combat the most important factors that limit the performance of modern high speed single ended systems, a high speed GDDR5 memory system (link width: ×32) has been designed using a Rambus prototype test-chip (TSMC 40 nm process node) and a leading single ended signaling graphics GDDR5 DRAM. Critical challenges faced in scaling the data rates up to 8 Gbps are presented and the varying impact of these challenges on the system margin is shown for increasing speeds. An example of a chip-to-chip system between two prototype test chips, that mitigates these performance limiting determinants, is shown to operate robustly at data rates beyond 8 Gbps. The ingredients of this system are likely techniques for the future graphics memories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信