{"title":"并行微通道流动冷却电子器件的非均匀温度分布","authors":"G. Hetsroni, A. Mosyak, Z. Segal","doi":"10.1109/6144.910797","DOIUrl":null,"url":null,"abstract":"\n We fabricated a novel thermal microsystems (simulating a computer chip) consisting of a heater, microchannels, inlet and outlet plena and we studied the effect of the geometry on the flow and heat transfer. The vapor - water two-phase flow patterns were observed in the parallel microchannels through a microscope and high-speed video camera. It was observed that hydraulic instabilities occur. Existence of a periodic annular flow was also observed, which consist of a symmetrically distributed liquid ring surrounding the vapor core. Along the microchannel axis, the periodic dry zone appears and develops. The thermal visualization and temperature measurements of the heated device were carried out using infrared thermography. As long as the flow was single phase liquid, the forced convection heat transfer resulted in a moderate irregularity on the heated chip. These temperature differences do not cause damage to the device. The steady-state heat transfer for different types of microchannels has been studied also at the range of heat flux where phase change of the working fluid from liquid to vapor took place. Under conditions of flow boiling in microchannels, a significant enhancement of heat transfer was established. In the case of uniform heat flux the hydraulic instabilities lead to irregularity of temperature distribution on the heated chip. In the case of nonuniform heat flux the irregularity increased drastically.","PeriodicalId":179094,"journal":{"name":"Packaging of Electronic and Photonic Devices","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"193","resultStr":"{\"title\":\"Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels\",\"authors\":\"G. Hetsroni, A. Mosyak, Z. Segal\",\"doi\":\"10.1109/6144.910797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We fabricated a novel thermal microsystems (simulating a computer chip) consisting of a heater, microchannels, inlet and outlet plena and we studied the effect of the geometry on the flow and heat transfer. The vapor - water two-phase flow patterns were observed in the parallel microchannels through a microscope and high-speed video camera. It was observed that hydraulic instabilities occur. Existence of a periodic annular flow was also observed, which consist of a symmetrically distributed liquid ring surrounding the vapor core. Along the microchannel axis, the periodic dry zone appears and develops. The thermal visualization and temperature measurements of the heated device were carried out using infrared thermography. As long as the flow was single phase liquid, the forced convection heat transfer resulted in a moderate irregularity on the heated chip. These temperature differences do not cause damage to the device. The steady-state heat transfer for different types of microchannels has been studied also at the range of heat flux where phase change of the working fluid from liquid to vapor took place. Under conditions of flow boiling in microchannels, a significant enhancement of heat transfer was established. In the case of uniform heat flux the hydraulic instabilities lead to irregularity of temperature distribution on the heated chip. In the case of nonuniform heat flux the irregularity increased drastically.\",\"PeriodicalId\":179094,\"journal\":{\"name\":\"Packaging of Electronic and Photonic Devices\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"193\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Packaging of Electronic and Photonic Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/6144.910797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Packaging of Electronic and Photonic Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/6144.910797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels
We fabricated a novel thermal microsystems (simulating a computer chip) consisting of a heater, microchannels, inlet and outlet plena and we studied the effect of the geometry on the flow and heat transfer. The vapor - water two-phase flow patterns were observed in the parallel microchannels through a microscope and high-speed video camera. It was observed that hydraulic instabilities occur. Existence of a periodic annular flow was also observed, which consist of a symmetrically distributed liquid ring surrounding the vapor core. Along the microchannel axis, the periodic dry zone appears and develops. The thermal visualization and temperature measurements of the heated device were carried out using infrared thermography. As long as the flow was single phase liquid, the forced convection heat transfer resulted in a moderate irregularity on the heated chip. These temperature differences do not cause damage to the device. The steady-state heat transfer for different types of microchannels has been studied also at the range of heat flux where phase change of the working fluid from liquid to vapor took place. Under conditions of flow boiling in microchannels, a significant enhancement of heat transfer was established. In the case of uniform heat flux the hydraulic instabilities lead to irregularity of temperature distribution on the heated chip. In the case of nonuniform heat flux the irregularity increased drastically.