时钟分配网络抖动分析

R. Darapu, C.W. Zhang, L. Forbes
{"title":"时钟分配网络抖动分析","authors":"R. Darapu, C.W. Zhang, L. Forbes","doi":"10.1109/WMED.2004.1297348","DOIUrl":null,"url":null,"abstract":"A technique for the simulation of jitter in clock distribution networks will be demonstrated. Noise is injected as a time domain signal into each driver stage in the clock distribution network and large signal non-linear transient simulations are performed to obtain the distribution of clock periods and the subsequent jitter in the clock signal. In the simplest case the noise is the thermal channel noise of the CMOS driver transistors, and the results can be compared to the simple analytical estimate given by Gray et al.[1994]. It will be shown that there is a good agreement between the simulation results and analytical estimates if a modified analytical formula is used where the simple estimate for delay by Gray et al. is replaced by the observed delay from simulations. The technique can be extended and is directly applicable to other types of noise such as power supply noise.","PeriodicalId":296968,"journal":{"name":"2004 IEEE Workshop on Microelectronics and Electron Devices","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Analysis of jitter in clock distribution networks\",\"authors\":\"R. Darapu, C.W. Zhang, L. Forbes\",\"doi\":\"10.1109/WMED.2004.1297348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technique for the simulation of jitter in clock distribution networks will be demonstrated. Noise is injected as a time domain signal into each driver stage in the clock distribution network and large signal non-linear transient simulations are performed to obtain the distribution of clock periods and the subsequent jitter in the clock signal. In the simplest case the noise is the thermal channel noise of the CMOS driver transistors, and the results can be compared to the simple analytical estimate given by Gray et al.[1994]. It will be shown that there is a good agreement between the simulation results and analytical estimates if a modified analytical formula is used where the simple estimate for delay by Gray et al. is replaced by the observed delay from simulations. The technique can be extended and is directly applicable to other types of noise such as power supply noise.\",\"PeriodicalId\":296968,\"journal\":{\"name\":\"2004 IEEE Workshop on Microelectronics and Electron Devices\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE Workshop on Microelectronics and Electron Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WMED.2004.1297348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE Workshop on Microelectronics and Electron Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMED.2004.1297348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文将演示时钟分配网络抖动仿真技术。将噪声作为时域信号注入到时钟分配网络的每个驱动级,并进行大信号非线性瞬态仿真,得到时钟周期的分布和时钟信号的后续抖动。在最简单的情况下,噪声是CMOS驱动晶体管的热通道噪声,其结果可以与Gray等人[1994]给出的简单分析估计进行比较。如果使用修正的分析公式,将Gray等人对延迟的简单估计替换为模拟中观察到的延迟,将表明仿真结果与分析估计之间存在很好的一致性。该技术可以扩展,并直接适用于其他类型的噪声,如电源噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of jitter in clock distribution networks
A technique for the simulation of jitter in clock distribution networks will be demonstrated. Noise is injected as a time domain signal into each driver stage in the clock distribution network and large signal non-linear transient simulations are performed to obtain the distribution of clock periods and the subsequent jitter in the clock signal. In the simplest case the noise is the thermal channel noise of the CMOS driver transistors, and the results can be compared to the simple analytical estimate given by Gray et al.[1994]. It will be shown that there is a good agreement between the simulation results and analytical estimates if a modified analytical formula is used where the simple estimate for delay by Gray et al. is replaced by the observed delay from simulations. The technique can be extended and is directly applicable to other types of noise such as power supply noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信