T. Matsumae, Y. Kurashima, H. Takagi, H. Umezawa, E. Higurashi
{"title":"常压条件下多晶金刚石衬底与硅片的直接键合","authors":"T. Matsumae, Y. Kurashima, H. Takagi, H. Umezawa, E. Higurashi","doi":"10.1109/LTB-3D53950.2021.9598377","DOIUrl":null,"url":null,"abstract":"A polycrystalline diamond substrate treated with a mixture of NH3 and H2O2 was directly bonded with a plasma-activated Si wafer. They formed atomic bonds by annealing at 250 °C after contacting surfaces in atmospheric air. The bonding method would contribute to the future large-scale integration of diamond heat spreaders with electronics.","PeriodicalId":198318,"journal":{"name":"2021 7th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct bonding of polycrystalline diamond substrate onto Si wafer under atmospheric conditions\",\"authors\":\"T. Matsumae, Y. Kurashima, H. Takagi, H. Umezawa, E. Higurashi\",\"doi\":\"10.1109/LTB-3D53950.2021.9598377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A polycrystalline diamond substrate treated with a mixture of NH3 and H2O2 was directly bonded with a plasma-activated Si wafer. They formed atomic bonds by annealing at 250 °C after contacting surfaces in atmospheric air. The bonding method would contribute to the future large-scale integration of diamond heat spreaders with electronics.\",\"PeriodicalId\":198318,\"journal\":{\"name\":\"2021 7th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LTB-3D53950.2021.9598377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LTB-3D53950.2021.9598377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Direct bonding of polycrystalline diamond substrate onto Si wafer under atmospheric conditions
A polycrystalline diamond substrate treated with a mixture of NH3 and H2O2 was directly bonded with a plasma-activated Si wafer. They formed atomic bonds by annealing at 250 °C after contacting surfaces in atmospheric air. The bonding method would contribute to the future large-scale integration of diamond heat spreaders with electronics.