一种多处理机系统故障诊断的新方案

Xiaofan Yang, Tinghuai Chen, Zehan Cao, Zhongshi He, H. Cao
{"title":"一种多处理机系统故障诊断的新方案","authors":"Xiaofan Yang, Tinghuai Chen, Zehan Cao, Zhongshi He, H. Cao","doi":"10.1109/ATS.1996.555173","DOIUrl":null,"url":null,"abstract":"The present paper is concerned with the system-level probabilistic diagnosis problem of multiprocessor systems. First, a new diagnosis algorithm, known as the K-Step-Voting (K-SV) algorithm, is presented. This algorithm generalizes the Majority-Voting (MV) algorithm due to Blough et al. (1992). Then K-SV algorithm is theoretically proved to be better than the MV algorithm. Finally, through computer simulations, the K-SV algorithm is shown to be much superior to the MV algorithm when run on hypercube systems.","PeriodicalId":215252,"journal":{"name":"Proceedings of the Fifth Asian Test Symposium (ATS'96)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new scheme for the fault diagnosis of multiprocessor systems\",\"authors\":\"Xiaofan Yang, Tinghuai Chen, Zehan Cao, Zhongshi He, H. Cao\",\"doi\":\"10.1109/ATS.1996.555173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper is concerned with the system-level probabilistic diagnosis problem of multiprocessor systems. First, a new diagnosis algorithm, known as the K-Step-Voting (K-SV) algorithm, is presented. This algorithm generalizes the Majority-Voting (MV) algorithm due to Blough et al. (1992). Then K-SV algorithm is theoretically proved to be better than the MV algorithm. Finally, through computer simulations, the K-SV algorithm is shown to be much superior to the MV algorithm when run on hypercube systems.\",\"PeriodicalId\":215252,\"journal\":{\"name\":\"Proceedings of the Fifth Asian Test Symposium (ATS'96)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Asian Test Symposium (ATS'96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATS.1996.555173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Asian Test Symposium (ATS'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS.1996.555173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了多处理机系统的系统级概率诊断问题。首先,提出了一种新的诊断算法——k步投票(K-SV)算法。该算法推广了Blough et al.(1992)提出的Majority-Voting (MV)算法。然后从理论上证明了K-SV算法优于MV算法。最后,通过计算机仿真,K-SV算法在超立方体系统上运行时明显优于MV算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new scheme for the fault diagnosis of multiprocessor systems
The present paper is concerned with the system-level probabilistic diagnosis problem of multiprocessor systems. First, a new diagnosis algorithm, known as the K-Step-Voting (K-SV) algorithm, is presented. This algorithm generalizes the Majority-Voting (MV) algorithm due to Blough et al. (1992). Then K-SV algorithm is theoretically proved to be better than the MV algorithm. Finally, through computer simulations, the K-SV algorithm is shown to be much superior to the MV algorithm when run on hypercube systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信