并行扫描顺序电路的合成

B. Vinnakota, N. K. Jha
{"title":"并行扫描顺序电路的合成","authors":"B. Vinnakota, N. K. Jha","doi":"10.1109/EDAC.1992.205956","DOIUrl":null,"url":null,"abstract":"Sequential circuit testing is known to be a difficult problem. The authors present a synthesis for testability (SFT) method to solve this problem. In this approach, some testability features analogous to the traditional scan design are added to the normal logic equations which define the finite state machine (FSM). The augmented FSM is then synthesized with these added features built in. The overhead may thus be reduced as the logic needed to obtain testability is merged with the logic needed for normal functionality. Another advantage of this approach is that the test set length is usually very small; in many cases, the authors obtain a sequential test which is roughly only twice the size of the combinational test set derived for the combinational logic of the sequential circuit. This drastically reduces the test application time without sacrificing the advantages of scan design: high fault coverage and low test generation time. By applying their method to benchmark FSM examples the authors show that the resultant area overhead is also quite low.<<ETX>>","PeriodicalId":285019,"journal":{"name":"[1992] Proceedings The European Conference on Design Automation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Synthesis of sequential circuits for parallel scan\",\"authors\":\"B. Vinnakota, N. K. Jha\",\"doi\":\"10.1109/EDAC.1992.205956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequential circuit testing is known to be a difficult problem. The authors present a synthesis for testability (SFT) method to solve this problem. In this approach, some testability features analogous to the traditional scan design are added to the normal logic equations which define the finite state machine (FSM). The augmented FSM is then synthesized with these added features built in. The overhead may thus be reduced as the logic needed to obtain testability is merged with the logic needed for normal functionality. Another advantage of this approach is that the test set length is usually very small; in many cases, the authors obtain a sequential test which is roughly only twice the size of the combinational test set derived for the combinational logic of the sequential circuit. This drastically reduces the test application time without sacrificing the advantages of scan design: high fault coverage and low test generation time. By applying their method to benchmark FSM examples the authors show that the resultant area overhead is also quite low.<<ETX>>\",\"PeriodicalId\":285019,\"journal\":{\"name\":\"[1992] Proceedings The European Conference on Design Automation\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings The European Conference on Design Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDAC.1992.205956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings The European Conference on Design Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAC.1992.205956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

顺序电路测试是一个难题。针对这一问题,提出了一种可测性综合方法。该方法在定义有限状态机(FSM)的常规逻辑方程中加入了类似于传统扫描设计的可测试性特征。然后用这些添加的内置特性合成增强的FSM。因此,当获得可测试性所需的逻辑与正常功能所需的逻辑合并时,开销可能会减少。这种方法的另一个优点是测试集长度通常非常小;在许多情况下,作者得到的顺序测试大约只有顺序电路组合逻辑的组合测试集的两倍大小。这大大减少了测试应用时间,而不牺牲扫描设计的优点:高故障覆盖率和低测试生成时间。通过将他们的方法应用到FSM的基准示例中,作者表明所得到的面积开销也相当低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of sequential circuits for parallel scan
Sequential circuit testing is known to be a difficult problem. The authors present a synthesis for testability (SFT) method to solve this problem. In this approach, some testability features analogous to the traditional scan design are added to the normal logic equations which define the finite state machine (FSM). The augmented FSM is then synthesized with these added features built in. The overhead may thus be reduced as the logic needed to obtain testability is merged with the logic needed for normal functionality. Another advantage of this approach is that the test set length is usually very small; in many cases, the authors obtain a sequential test which is roughly only twice the size of the combinational test set derived for the combinational logic of the sequential circuit. This drastically reduces the test application time without sacrificing the advantages of scan design: high fault coverage and low test generation time. By applying their method to benchmark FSM examples the authors show that the resultant area overhead is also quite low.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信