{"title":"使用弹性时钟防止定时错误","authors":"Kwanyeob Chae, Chang-Ho Lee, S. Mukhopadhyay","doi":"10.1109/ICICDT.2011.5783192","DOIUrl":null,"url":null,"abstract":"“Safety margin” for a logic circuit introduces a performance overhead. But eliminating safety margin makes a system more prone to timing failure, particularly under dynamic operating variations. This paper presents dynamic timing control technique that allows a system to operate without any safety margin. The dynamic control method prevents timing errors utilizing time borrowing and elastic clocking. Time borrowing allows a pipeline to compensate the timing slack by borrowing time from the next pipeline stage and clock stretching pays back the borrowed time to the next pipeline stage. Thus, a system employing such dynamic timing control technique can prevent errors with a small performance penalty and eventually operate without safety margin. The net effect is better power-performance trade-off under voltage scaling i.e. lower power consumption for a target frequency or higher operating frequency for a target power. The proposed technique was validated using a prototype test-chip designed in 180-nm CMOS technology.","PeriodicalId":402000,"journal":{"name":"2011 IEEE International Conference on IC Design & Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Timing error prevention using elastic clocking\",\"authors\":\"Kwanyeob Chae, Chang-Ho Lee, S. Mukhopadhyay\",\"doi\":\"10.1109/ICICDT.2011.5783192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"“Safety margin” for a logic circuit introduces a performance overhead. But eliminating safety margin makes a system more prone to timing failure, particularly under dynamic operating variations. This paper presents dynamic timing control technique that allows a system to operate without any safety margin. The dynamic control method prevents timing errors utilizing time borrowing and elastic clocking. Time borrowing allows a pipeline to compensate the timing slack by borrowing time from the next pipeline stage and clock stretching pays back the borrowed time to the next pipeline stage. Thus, a system employing such dynamic timing control technique can prevent errors with a small performance penalty and eventually operate without safety margin. The net effect is better power-performance trade-off under voltage scaling i.e. lower power consumption for a target frequency or higher operating frequency for a target power. The proposed technique was validated using a prototype test-chip designed in 180-nm CMOS technology.\",\"PeriodicalId\":402000,\"journal\":{\"name\":\"2011 IEEE International Conference on IC Design & Technology\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on IC Design & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICDT.2011.5783192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on IC Design & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT.2011.5783192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
“Safety margin” for a logic circuit introduces a performance overhead. But eliminating safety margin makes a system more prone to timing failure, particularly under dynamic operating variations. This paper presents dynamic timing control technique that allows a system to operate without any safety margin. The dynamic control method prevents timing errors utilizing time borrowing and elastic clocking. Time borrowing allows a pipeline to compensate the timing slack by borrowing time from the next pipeline stage and clock stretching pays back the borrowed time to the next pipeline stage. Thus, a system employing such dynamic timing control technique can prevent errors with a small performance penalty and eventually operate without safety margin. The net effect is better power-performance trade-off under voltage scaling i.e. lower power consumption for a target frequency or higher operating frequency for a target power. The proposed technique was validated using a prototype test-chip designed in 180-nm CMOS technology.