一种用于智能微创手术工具的一次性塑料紧凑型手腕

F. V. Meer, A. Giraud, D. Estève, X. Dollat
{"title":"一种用于智能微创手术工具的一次性塑料紧凑型手腕","authors":"F. V. Meer, A. Giraud, D. Estève, X. Dollat","doi":"10.1109/IROS.2005.1545440","DOIUrl":null,"url":null,"abstract":"This paper describes a new compact bending and disposable (to avoid nosocomial contaminations) plastic wrist for minimally invasive surgery with a large free space for several connections such as electrical wires, fiberoptics and fluidic tubes, etc. It uses small partially locked ball joints to increase the dexterity of surgical tools in all directions contrary to other wrists using several successive orthogonal joints. This compact wrist is a generic concept comprises at least two vertebrae composed of non-attached contacts: plastic plates and balls. Six metal wires drive the position of each vertebra and several other free wires allow the locking of wrist axial rotations. Analytic and finite element simulations allow an evaluation of the mechanical rigidity of the wrist by several parameters: the wire number, diameter, position, mechanical properties and the general geometry of the wrist. The wrist is fabricated with 6 mm biocompatible plastic vertebrae micromachined by low cost water jet cutting. It uses 0.3 mm NiTi super-elastic wires for its mechanical structure which enable two degrees of freedom (DOF) in any directions between -85 degrees and 85 degrees. The two DOFs of the wrist and the DOF of the forceps are driven by a handled basic system using pulleys, 0.5mm Topline/spl reg/ ropes connected to NiTi wires and four RC-servomotors. In the first prototype 6 electrical wires, 2 micro-light emitters and 4 fiberoptics were successfully integrated. We are convinced of the effectiveness of this compact disposable plastic wrist, to be used with a usual or a motorised handled surgical instrument and integrating new functionalities such as electrical/optical/fluidics connections for smart surgical embedded micro-systems like micro-sensors and micro-actuators.","PeriodicalId":189219,"journal":{"name":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"A disposable plastic compact wrist for smart minimally invasive surgical tools\",\"authors\":\"F. V. Meer, A. Giraud, D. Estève, X. Dollat\",\"doi\":\"10.1109/IROS.2005.1545440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new compact bending and disposable (to avoid nosocomial contaminations) plastic wrist for minimally invasive surgery with a large free space for several connections such as electrical wires, fiberoptics and fluidic tubes, etc. It uses small partially locked ball joints to increase the dexterity of surgical tools in all directions contrary to other wrists using several successive orthogonal joints. This compact wrist is a generic concept comprises at least two vertebrae composed of non-attached contacts: plastic plates and balls. Six metal wires drive the position of each vertebra and several other free wires allow the locking of wrist axial rotations. Analytic and finite element simulations allow an evaluation of the mechanical rigidity of the wrist by several parameters: the wire number, diameter, position, mechanical properties and the general geometry of the wrist. The wrist is fabricated with 6 mm biocompatible plastic vertebrae micromachined by low cost water jet cutting. It uses 0.3 mm NiTi super-elastic wires for its mechanical structure which enable two degrees of freedom (DOF) in any directions between -85 degrees and 85 degrees. The two DOFs of the wrist and the DOF of the forceps are driven by a handled basic system using pulleys, 0.5mm Topline/spl reg/ ropes connected to NiTi wires and four RC-servomotors. In the first prototype 6 electrical wires, 2 micro-light emitters and 4 fiberoptics were successfully integrated. We are convinced of the effectiveness of this compact disposable plastic wrist, to be used with a usual or a motorised handled surgical instrument and integrating new functionalities such as electrical/optical/fluidics connections for smart surgical embedded micro-systems like micro-sensors and micro-actuators.\",\"PeriodicalId\":189219,\"journal\":{\"name\":\"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2005.1545440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2005.1545440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文介绍了一种用于微创手术的可弯曲、一次性(避免医院污染)的新型塑料手腕,该手腕具有较大的自由空间,可以连接电线、光纤和流体管等。它使用小的部分锁定球关节来增加手术工具在各个方向的灵活性,而不是使用几个连续的正交关节。这种紧凑型手腕是一个通用概念,包括至少两个由非连接接触组成的椎骨:塑料板和球。六根金属丝驱动每个椎体的位置,其他几根自由丝允许锁定手腕轴向旋转。分析和有限元模拟允许通过几个参数来评估手腕的机械刚度:导线数量,直径,位置,机械性能和手腕的一般几何形状。腕部由6毫米生物相容性塑料椎骨制成,通过低成本水射流切割进行微机械加工。它的机械结构采用0.3毫米NiTi超弹性线,在-85度和85度之间的任何方向上都可以实现两个自由度(DOF)。手腕的两个自由度和钳子的自由度由一个有手柄的基本系统驱动,该系统使用滑轮、连接到NiTi线的0.5mm Topline/spl reg/绳索和四个rc伺服电机。在第一个原型中,成功地集成了6根电线,2个微光源和4个光纤。我们相信这种紧凑的一次性塑料手腕的有效性,可以与普通或电动处理的手术器械一起使用,并集成新的功能,如电子/光学/流体连接,用于智能外科嵌入式微系统,如微传感器和微致动器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A disposable plastic compact wrist for smart minimally invasive surgical tools
This paper describes a new compact bending and disposable (to avoid nosocomial contaminations) plastic wrist for minimally invasive surgery with a large free space for several connections such as electrical wires, fiberoptics and fluidic tubes, etc. It uses small partially locked ball joints to increase the dexterity of surgical tools in all directions contrary to other wrists using several successive orthogonal joints. This compact wrist is a generic concept comprises at least two vertebrae composed of non-attached contacts: plastic plates and balls. Six metal wires drive the position of each vertebra and several other free wires allow the locking of wrist axial rotations. Analytic and finite element simulations allow an evaluation of the mechanical rigidity of the wrist by several parameters: the wire number, diameter, position, mechanical properties and the general geometry of the wrist. The wrist is fabricated with 6 mm biocompatible plastic vertebrae micromachined by low cost water jet cutting. It uses 0.3 mm NiTi super-elastic wires for its mechanical structure which enable two degrees of freedom (DOF) in any directions between -85 degrees and 85 degrees. The two DOFs of the wrist and the DOF of the forceps are driven by a handled basic system using pulleys, 0.5mm Topline/spl reg/ ropes connected to NiTi wires and four RC-servomotors. In the first prototype 6 electrical wires, 2 micro-light emitters and 4 fiberoptics were successfully integrated. We are convinced of the effectiveness of this compact disposable plastic wrist, to be used with a usual or a motorised handled surgical instrument and integrating new functionalities such as electrical/optical/fluidics connections for smart surgical embedded micro-systems like micro-sensors and micro-actuators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信