负二项良率统计的模具试模优化算法分析

C. M. Krishna, A. Singh
{"title":"负二项良率统计的模具试模优化算法分析","authors":"C. M. Krishna, A. Singh","doi":"10.1109/VTEST.1992.232745","DOIUrl":null,"url":null,"abstract":"Introduces a new adaptive testing algorithm that uses spatial defect clustering information and available test from neighbouring dies to optimize test lengths during wafer-probe testing. When applied to the defect distribution data for 12 sample wafers collected by Saji and Armstrong, the new approach showed potential for providing improvement in overall product quality. In this paper, the authors conduct a more general study to evaluate the proposed new test optimization algorithm based on the widely accepted negative binomial model for defect distributions on a wafer. The objective is to obtain a more accurate measure of the magnitude of the defect-level improvements that can be expected under various yield and defect-clustering conditions.<<ETX>>","PeriodicalId":434977,"journal":{"name":"Digest of Papers. 1992 IEEE VLSI Test Symposium","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of the die test optimization algorithm for negative binomial yield statistics\",\"authors\":\"C. M. Krishna, A. Singh\",\"doi\":\"10.1109/VTEST.1992.232745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduces a new adaptive testing algorithm that uses spatial defect clustering information and available test from neighbouring dies to optimize test lengths during wafer-probe testing. When applied to the defect distribution data for 12 sample wafers collected by Saji and Armstrong, the new approach showed potential for providing improvement in overall product quality. In this paper, the authors conduct a more general study to evaluate the proposed new test optimization algorithm based on the widely accepted negative binomial model for defect distributions on a wafer. The objective is to obtain a more accurate measure of the magnitude of the defect-level improvements that can be expected under various yield and defect-clustering conditions.<<ETX>>\",\"PeriodicalId\":434977,\"journal\":{\"name\":\"Digest of Papers. 1992 IEEE VLSI Test Symposium\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest of Papers. 1992 IEEE VLSI Test Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTEST.1992.232745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Papers. 1992 IEEE VLSI Test Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTEST.1992.232745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

介绍了一种新的自适应测试算法,该算法利用空间缺陷聚类信息和邻近芯片的可用测试来优化晶圆探针测试过程中的测试长度。当应用于Saji和Armstrong收集的12个晶圆样品的缺陷分布数据时,新方法显示出提供整体产品质量改进的潜力。在本文中,作者进行了更广泛的研究,以评估基于广泛接受的晶圆上缺陷分布的负二项模型提出的新的测试优化算法。目标是获得在各种良率和缺陷聚类条件下预期的缺陷级改进幅度的更准确度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the die test optimization algorithm for negative binomial yield statistics
Introduces a new adaptive testing algorithm that uses spatial defect clustering information and available test from neighbouring dies to optimize test lengths during wafer-probe testing. When applied to the defect distribution data for 12 sample wafers collected by Saji and Armstrong, the new approach showed potential for providing improvement in overall product quality. In this paper, the authors conduct a more general study to evaluate the proposed new test optimization algorithm based on the widely accepted negative binomial model for defect distributions on a wafer. The objective is to obtain a more accurate measure of the magnitude of the defect-level improvements that can be expected under various yield and defect-clustering conditions.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信