{"title":"一种用于DSP处理器的可控低功耗双端口嵌入式SRAM","authors":"Hao-I Yang, Ming-Hung Chang, Tay-Jyi Lin, Shih-Hao Ou, Siang-Sen Deng, Chih-Wei Liu, W. Hwang","doi":"10.1109/MTDT.2007.4547610","DOIUrl":null,"url":null,"abstract":"In this paper, a low-power embedded memory module is designed for a multi-threaded DSP processor. A co-design of circuit and architecture technique is proposed. The technique includes three circuit schemes: controllable pre-charged bit-line, low voltage bit-line, and controllable data-retention power gating. Because the low-power control signals are generated by the DSP engine, the operating condition of the memory module can be arbitrarily adjusted by using software programming. The integration of low-power dual-port 8KB SRAM and the multi-threaded DSP engine is implemented in TSMC 130 nm CMOS technology. By using these techniques, the overall access power reduction of the DSP core is around 15.30%-16.84%.","PeriodicalId":422226,"journal":{"name":"2007 IEEE International Workshop on Memory Technology, Design and Testing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Controllable low-power dual-port embedded SRAM for DSP processor\",\"authors\":\"Hao-I Yang, Ming-Hung Chang, Tay-Jyi Lin, Shih-Hao Ou, Siang-Sen Deng, Chih-Wei Liu, W. Hwang\",\"doi\":\"10.1109/MTDT.2007.4547610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a low-power embedded memory module is designed for a multi-threaded DSP processor. A co-design of circuit and architecture technique is proposed. The technique includes three circuit schemes: controllable pre-charged bit-line, low voltage bit-line, and controllable data-retention power gating. Because the low-power control signals are generated by the DSP engine, the operating condition of the memory module can be arbitrarily adjusted by using software programming. The integration of low-power dual-port 8KB SRAM and the multi-threaded DSP engine is implemented in TSMC 130 nm CMOS technology. By using these techniques, the overall access power reduction of the DSP core is around 15.30%-16.84%.\",\"PeriodicalId\":422226,\"journal\":{\"name\":\"2007 IEEE International Workshop on Memory Technology, Design and Testing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Workshop on Memory Technology, Design and Testing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MTDT.2007.4547610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Workshop on Memory Technology, Design and Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MTDT.2007.4547610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Controllable low-power dual-port embedded SRAM for DSP processor
In this paper, a low-power embedded memory module is designed for a multi-threaded DSP processor. A co-design of circuit and architecture technique is proposed. The technique includes three circuit schemes: controllable pre-charged bit-line, low voltage bit-line, and controllable data-retention power gating. Because the low-power control signals are generated by the DSP engine, the operating condition of the memory module can be arbitrarily adjusted by using software programming. The integration of low-power dual-port 8KB SRAM and the multi-threaded DSP engine is implemented in TSMC 130 nm CMOS technology. By using these techniques, the overall access power reduction of the DSP core is around 15.30%-16.84%.