纳米二氧化钛生长在钛微柱上,具有出色的排芯性能,用于微电子器件的热管理

A. S. Zuruzi, H. C. Gardner, N. MacDonald
{"title":"纳米二氧化钛生长在钛微柱上,具有出色的排芯性能,用于微电子器件的热管理","authors":"A. S. Zuruzi, H. C. Gardner, N. MacDonald","doi":"10.1109/IEMT.2012.6521811","DOIUrl":null,"url":null,"abstract":"This paper discusses a novel thermal management approach using nanostructured titania formed on high-aspect ratio micromachined titanium structures. A recently developed dry etching technology, with etch rates of more than 2 μm/min, enables bulk micromachining of titanium using an inductively coupled plasma to define high aspect ratio structures. This technology allows for the development of three-dimensional architectures through the successive stacking and bonding of through-etched titanium foils. Nanostructured titania was formed on high aspect ratio titanium structures using a simple technology involving oxidation in aqueous hydrogen peroxide followed by annealing. These high aspect ratio structures with nanostructured titania surface and titanium core have excellent hydrophilic properties which bodes well for thermal management applications. Compared to those using copper based wick materials, heat pipes using nanostructured titania/Ti ones have better capillary speed characteristics which decays at a slower rate.","PeriodicalId":315408,"journal":{"name":"2012 35th IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored nanostructured titania grown on titanium micropillars with outstanding wicking properties for thermal management of microelectronics devices\",\"authors\":\"A. S. Zuruzi, H. C. Gardner, N. MacDonald\",\"doi\":\"10.1109/IEMT.2012.6521811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses a novel thermal management approach using nanostructured titania formed on high-aspect ratio micromachined titanium structures. A recently developed dry etching technology, with etch rates of more than 2 μm/min, enables bulk micromachining of titanium using an inductively coupled plasma to define high aspect ratio structures. This technology allows for the development of three-dimensional architectures through the successive stacking and bonding of through-etched titanium foils. Nanostructured titania was formed on high aspect ratio titanium structures using a simple technology involving oxidation in aqueous hydrogen peroxide followed by annealing. These high aspect ratio structures with nanostructured titania surface and titanium core have excellent hydrophilic properties which bodes well for thermal management applications. Compared to those using copper based wick materials, heat pipes using nanostructured titania/Ti ones have better capillary speed characteristics which decays at a slower rate.\",\"PeriodicalId\":315408,\"journal\":{\"name\":\"2012 35th IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 35th IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMT.2012.6521811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 35th IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMT.2012.6521811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一种利用高纵横比微加工钛结构形成纳米二氧化钛的新型热管理方法。最近开发的一种干式蚀刻技术,蚀刻速率超过2 μm/min,可以使用电感耦合等离子体对钛进行大规模微加工,以定义高纵横比结构。该技术允许通过连续堆叠和通过蚀刻钛箔的键合来开发三维结构。采用简单的双氧水氧化和退火工艺,在高纵横比钛结构上制备了纳米二氧化钛。这些高纵横比结构具有纳米结构的二氧化钛表面和钛芯,具有优异的亲水性,预示着热管理应用的良好前景。与使用铜基芯材料的热管相比,纳米结构钛/钛热管具有更好的毛细速度特性,衰减速度更慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailored nanostructured titania grown on titanium micropillars with outstanding wicking properties for thermal management of microelectronics devices
This paper discusses a novel thermal management approach using nanostructured titania formed on high-aspect ratio micromachined titanium structures. A recently developed dry etching technology, with etch rates of more than 2 μm/min, enables bulk micromachining of titanium using an inductively coupled plasma to define high aspect ratio structures. This technology allows for the development of three-dimensional architectures through the successive stacking and bonding of through-etched titanium foils. Nanostructured titania was formed on high aspect ratio titanium structures using a simple technology involving oxidation in aqueous hydrogen peroxide followed by annealing. These high aspect ratio structures with nanostructured titania surface and titanium core have excellent hydrophilic properties which bodes well for thermal management applications. Compared to those using copper based wick materials, heat pipes using nanostructured titania/Ti ones have better capillary speed characteristics which decays at a slower rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信