包含各向异性输运性质的半导体漂移-扩散方程的鲁棒有限元向量公式

C. M. Johnson, J. Trattles
{"title":"包含各向异性输运性质的半导体漂移-扩散方程的鲁棒有限元向量公式","authors":"C. M. Johnson, J. Trattles","doi":"10.1109/SISPAD.1996.865310","DOIUrl":null,"url":null,"abstract":"In this paper, a new finite element vector formulation of the drift-diffusion model, including anisotropic effects, is introduced. Stability criteria for the model are described and a methodology is presented for providing stable solutions for spatial discretisations that include both acute and obtuse triangles, including cases where there is a large stretching of the element.","PeriodicalId":341161,"journal":{"name":"1996 International Conference on Simulation of Semiconductor Processes and Devices. SISPAD '96 (IEEE Cat. No.96TH8095)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust finite element vector formulation of the semiconductor drift-diffusion equations incorporating anisotropic transport properties\",\"authors\":\"C. M. Johnson, J. Trattles\",\"doi\":\"10.1109/SISPAD.1996.865310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new finite element vector formulation of the drift-diffusion model, including anisotropic effects, is introduced. Stability criteria for the model are described and a methodology is presented for providing stable solutions for spatial discretisations that include both acute and obtuse triangles, including cases where there is a large stretching of the element.\",\"PeriodicalId\":341161,\"journal\":{\"name\":\"1996 International Conference on Simulation of Semiconductor Processes and Devices. SISPAD '96 (IEEE Cat. No.96TH8095)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 International Conference on Simulation of Semiconductor Processes and Devices. SISPAD '96 (IEEE Cat. No.96TH8095)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.1996.865310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 International Conference on Simulation of Semiconductor Processes and Devices. SISPAD '96 (IEEE Cat. No.96TH8095)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.1996.865310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的包含各向异性效应的漂移扩散模型的有限元矢量表达式。描述了模型的稳定性标准,并提出了一种方法,为包括锐角三角形和钝角三角形在内的空间离散提供稳定的解决方案,包括元素有很大拉伸的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust finite element vector formulation of the semiconductor drift-diffusion equations incorporating anisotropic transport properties
In this paper, a new finite element vector formulation of the drift-diffusion model, including anisotropic effects, is introduced. Stability criteria for the model are described and a methodology is presented for providing stable solutions for spatial discretisations that include both acute and obtuse triangles, including cases where there is a large stretching of the element.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信