纳米光刻器件中产生EUV的激光等离子体中的离子动力学

T. Sizyuk
{"title":"纳米光刻器件中产生EUV的激光等离子体中的离子动力学","authors":"T. Sizyuk","doi":"10.1117/12.2514985","DOIUrl":null,"url":null,"abstract":"Increasing EUV photon power in laser-produced plasma (LPP) sources is critically needed for efficient nanolithography devices. Improving debris mitigation methods is another important subject in the development of EUV sources for high volume manufacture tools. We investigated different mechanisms affecting ions acceleration in LPP to predict the maximum ion energies and flux arriving at the mirror surface. We studied in details plasma evolution produced by Nd:YAG laser from Sn target to predict EUV producing ions dynamics and their contributions to EUV source. \nThe 3D multi-physics fully integrated HEIGHTS package was used in this analysis. We continue to develop, enhance, and benchmark the models implemented in our package to include various physics involved in LPP systems. HEIGHTS simulation of detail ion kinetic energies were compared with experimental data and showed great confidence in our advanced self-integrated models that can then be used for the explanation of the experimental data as well as for various predictions. Spatial and charge distributions were predicted for EUV producing ions and debris. We studied various target configurations and laser parameters to enhance the power of EUV sources as well as to reduce and mitigate ions and debris effects on the collecting mirror system. The comprehensive integrated full 3D models allowed accurate simulation of all processes of plasma formation, dynamics, and EUV photons emission and collection.","PeriodicalId":147291,"journal":{"name":"Extreme Ultraviolet (EUV) Lithography X","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ion dynamics in laser-produced plasma for EUV generation in nanolithography devices\",\"authors\":\"T. Sizyuk\",\"doi\":\"10.1117/12.2514985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing EUV photon power in laser-produced plasma (LPP) sources is critically needed for efficient nanolithography devices. Improving debris mitigation methods is another important subject in the development of EUV sources for high volume manufacture tools. We investigated different mechanisms affecting ions acceleration in LPP to predict the maximum ion energies and flux arriving at the mirror surface. We studied in details plasma evolution produced by Nd:YAG laser from Sn target to predict EUV producing ions dynamics and their contributions to EUV source. \\nThe 3D multi-physics fully integrated HEIGHTS package was used in this analysis. We continue to develop, enhance, and benchmark the models implemented in our package to include various physics involved in LPP systems. HEIGHTS simulation of detail ion kinetic energies were compared with experimental data and showed great confidence in our advanced self-integrated models that can then be used for the explanation of the experimental data as well as for various predictions. Spatial and charge distributions were predicted for EUV producing ions and debris. We studied various target configurations and laser parameters to enhance the power of EUV sources as well as to reduce and mitigate ions and debris effects on the collecting mirror system. The comprehensive integrated full 3D models allowed accurate simulation of all processes of plasma formation, dynamics, and EUV photons emission and collection.\",\"PeriodicalId\":147291,\"journal\":{\"name\":\"Extreme Ultraviolet (EUV) Lithography X\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Ultraviolet (EUV) Lithography X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2514985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Ultraviolet (EUV) Lithography X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2514985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提高激光等离子体(LPP)源的EUV光子功率是高效纳米光刻器件的关键。改进碎片缓减方法是为大批量制造工具开发极紫外光源的另一个重要课题。我们研究了影响LPP中离子加速的不同机制,以预测到达镜面的最大离子能量和通量。我们详细研究了Nd:YAG激光从Sn靶产生的等离子体演化,以预测产生极紫外光的离子动力学及其对极紫外光源的贡献。在分析中使用了3D多物理场全集成的HEIGHTS软件包。我们将继续开发、增强和基准测试我们包中实现的模型,以包括LPP系统中涉及的各种物理。详细离子动能的高度模拟与实验数据进行了比较,表明我们的先进的自集成模型对实验数据的解释以及各种预测都有很大的信心。预测了EUV产生离子和碎片的空间和电荷分布。我们研究了不同的目标配置和激光参数,以提高极紫外光源的功率,并减少和减轻离子和碎片对收集镜系统的影响。全面集成的全3D模型可以精确模拟等离子体形成、动力学和EUV光子发射和收集的所有过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ion dynamics in laser-produced plasma for EUV generation in nanolithography devices
Increasing EUV photon power in laser-produced plasma (LPP) sources is critically needed for efficient nanolithography devices. Improving debris mitigation methods is another important subject in the development of EUV sources for high volume manufacture tools. We investigated different mechanisms affecting ions acceleration in LPP to predict the maximum ion energies and flux arriving at the mirror surface. We studied in details plasma evolution produced by Nd:YAG laser from Sn target to predict EUV producing ions dynamics and their contributions to EUV source. The 3D multi-physics fully integrated HEIGHTS package was used in this analysis. We continue to develop, enhance, and benchmark the models implemented in our package to include various physics involved in LPP systems. HEIGHTS simulation of detail ion kinetic energies were compared with experimental data and showed great confidence in our advanced self-integrated models that can then be used for the explanation of the experimental data as well as for various predictions. Spatial and charge distributions were predicted for EUV producing ions and debris. We studied various target configurations and laser parameters to enhance the power of EUV sources as well as to reduce and mitigate ions and debris effects on the collecting mirror system. The comprehensive integrated full 3D models allowed accurate simulation of all processes of plasma formation, dynamics, and EUV photons emission and collection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信