k /往后空间中Si/Si0.7 Ge0.3纳米柱的能带计算

Min-Hui Chuang, Yiming Li
{"title":"k /往后空间中Si/Si0.7 Ge0.3纳米柱的能带计算","authors":"Min-Hui Chuang, Yiming Li","doi":"10.23919/SISPAD49475.2020.9241596","DOIUrl":null,"url":null,"abstract":"In this work, we explore the energy band of the well-aligned silicon (Si) nanopillars (NPs) embedded in $\\mathrm{S}\\mathrm{i}_{0.7}\\mathrm{G}\\mathrm{e}_{0.3}$ matrix fabricated by neutral beam etching. Instead of real-space modeling, we formulate and solve the Schrödinger equation with an effective mass approach using 3D finite-element simulation in $\\vec{k}$ space. This approach enables us to calculate the electronic structure in a computationally effective manner. The effects of the height, radius, separation, and shape of Si NPs on the energy band and density of states are calculated and discussed. The effect of the radius on the electron energy band control is significant while that of the shape is marginal owing to high geometry aspect ratio. In contrast with the results of electrons, both the radius and separation play crucial role in tuning the energy band of holes; consequently, they govern the variation of energy band gap of $\\mathrm{S}\\mathrm{i}/\\mathrm{S}\\mathrm{i}_{0.7}\\mathrm{G}\\mathrm{e}_{0.3}$ NPs.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"1061 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Band Calculation of Si/Si0.7 Ge0.3 Nanopillars in k➙ Space\",\"authors\":\"Min-Hui Chuang, Yiming Li\",\"doi\":\"10.23919/SISPAD49475.2020.9241596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we explore the energy band of the well-aligned silicon (Si) nanopillars (NPs) embedded in $\\\\mathrm{S}\\\\mathrm{i}_{0.7}\\\\mathrm{G}\\\\mathrm{e}_{0.3}$ matrix fabricated by neutral beam etching. Instead of real-space modeling, we formulate and solve the Schrödinger equation with an effective mass approach using 3D finite-element simulation in $\\\\vec{k}$ space. This approach enables us to calculate the electronic structure in a computationally effective manner. The effects of the height, radius, separation, and shape of Si NPs on the energy band and density of states are calculated and discussed. The effect of the radius on the electron energy band control is significant while that of the shape is marginal owing to high geometry aspect ratio. In contrast with the results of electrons, both the radius and separation play crucial role in tuning the energy band of holes; consequently, they govern the variation of energy band gap of $\\\\mathrm{S}\\\\mathrm{i}/\\\\mathrm{S}\\\\mathrm{i}_{0.7}\\\\mathrm{G}\\\\mathrm{e}_{0.3}$ NPs.\",\"PeriodicalId\":206964,\"journal\":{\"name\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"1061 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SISPAD49475.2020.9241596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们探索了嵌入在$\ mathm {S}\ mathm {i}_{0.7}\ mathm {G}\ mathm {e}_{0.3}$基体中的排列良好的硅(Si)纳米柱(NPs)的能量带。我们使用$\vec{k}$空间中的三维有限元模拟,采用有效的质量方法来制定和求解Schrödinger方程,而不是实际空间建模。这种方法使我们能够以一种计算有效的方式计算电子结构。计算并讨论了Si NPs的高度、半径、间距和形状对能带和态密度的影响。半径对电子能带控制的影响是显著的,而形状对电子能带控制的影响由于几何长宽比大而不明显。与电子的结果相反,半径和距离对空穴能带的调节起着至关重要的作用;因此,它们控制了$\ mathm {S}\ mathm {i}/ $ mathm {S}\ mathm {i}_{0.7}\ mathm {G}\ mathm {e}_{0.3}$ NPs的能带隙变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Band Calculation of Si/Si0.7 Ge0.3 Nanopillars in k➙ Space
In this work, we explore the energy band of the well-aligned silicon (Si) nanopillars (NPs) embedded in $\mathrm{S}\mathrm{i}_{0.7}\mathrm{G}\mathrm{e}_{0.3}$ matrix fabricated by neutral beam etching. Instead of real-space modeling, we formulate and solve the Schrödinger equation with an effective mass approach using 3D finite-element simulation in $\vec{k}$ space. This approach enables us to calculate the electronic structure in a computationally effective manner. The effects of the height, radius, separation, and shape of Si NPs on the energy band and density of states are calculated and discussed. The effect of the radius on the electron energy band control is significant while that of the shape is marginal owing to high geometry aspect ratio. In contrast with the results of electrons, both the radius and separation play crucial role in tuning the energy band of holes; consequently, they govern the variation of energy band gap of $\mathrm{S}\mathrm{i}/\mathrm{S}\mathrm{i}_{0.7}\mathrm{G}\mathrm{e}_{0.3}$ NPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信