基于表面脑电图的脑机接口深度学习方法

Lukasz Radzinski, Tomasz Kocejko
{"title":"基于表面脑电图的脑机接口深度学习方法","authors":"Lukasz Radzinski, Tomasz Kocejko","doi":"10.1109/HSI55341.2022.9869461","DOIUrl":null,"url":null,"abstract":"In this work we analysed the application of con-volutional neural networks in motor imagery classification for the Brain Computer Interface (BCI) purposes. To increase the accuracy of classification we proposed the solution that combines the Common Spatial Pattern (CSP) with convolutional network (ConvNet). The electroencephalography (EEG) is one of the modalities we try to use for controlling the prosthetic arm. Therefor in this paper we exploited the subject dependent approach and show results for models trained individually for a particular subject. Although the ConvNets are design to work directly with EEG data, presented approach of joining CSP with ConvNet shows increase in accuracy of movement classification. In average, our approach resulted in ∼80% accuracy.","PeriodicalId":282607,"journal":{"name":"2022 15th International Conference on Human System Interaction (HSI)","volume":"1025 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep learning approach on surface EEG based Brain Computer Interface\",\"authors\":\"Lukasz Radzinski, Tomasz Kocejko\",\"doi\":\"10.1109/HSI55341.2022.9869461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we analysed the application of con-volutional neural networks in motor imagery classification for the Brain Computer Interface (BCI) purposes. To increase the accuracy of classification we proposed the solution that combines the Common Spatial Pattern (CSP) with convolutional network (ConvNet). The electroencephalography (EEG) is one of the modalities we try to use for controlling the prosthetic arm. Therefor in this paper we exploited the subject dependent approach and show results for models trained individually for a particular subject. Although the ConvNets are design to work directly with EEG data, presented approach of joining CSP with ConvNet shows increase in accuracy of movement classification. In average, our approach resulted in ∼80% accuracy.\",\"PeriodicalId\":282607,\"journal\":{\"name\":\"2022 15th International Conference on Human System Interaction (HSI)\",\"volume\":\"1025 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 15th International Conference on Human System Interaction (HSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HSI55341.2022.9869461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 15th International Conference on Human System Interaction (HSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI55341.2022.9869461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们分析了卷积神经网络在脑机接口(BCI)目的的运动图像分类中的应用。为了提高分类精度,我们提出了将公共空间模式(CSP)与卷积网络(ConvNet)相结合的解决方案。脑电图(EEG)是我们试图用来控制义肢的方式之一。因此,在本文中,我们利用了主题相关方法,并显示了针对特定主题单独训练的模型的结果。虽然卷积神经网络的设计目的是直接处理脑电数据,但将CSP与卷积神经网络相结合的方法提高了运动分类的准确性。平均而言,我们的方法产生了~ 80%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning approach on surface EEG based Brain Computer Interface
In this work we analysed the application of con-volutional neural networks in motor imagery classification for the Brain Computer Interface (BCI) purposes. To increase the accuracy of classification we proposed the solution that combines the Common Spatial Pattern (CSP) with convolutional network (ConvNet). The electroencephalography (EEG) is one of the modalities we try to use for controlling the prosthetic arm. Therefor in this paper we exploited the subject dependent approach and show results for models trained individually for a particular subject. Although the ConvNets are design to work directly with EEG data, presented approach of joining CSP with ConvNet shows increase in accuracy of movement classification. In average, our approach resulted in ∼80% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信