{"title":"裸硅片翘曲的实验研究","authors":"N. Draney, Jun Liu, T. Jiang","doi":"10.1109/WMED.2004.1297371","DOIUrl":null,"url":null,"abstract":"IC packaging trends demand smaller packaging, which translates to thinner silicon; in some cases as thin as 50 /spl mu/m. Thinning below 305 /spl mu/m induces significant warp in product/metal wafers, which continues to increases as wafers are thinned further. Increased wafer warp results in handling/processing issues. Studies have been performed on product/metal wafers to characterize warp. These studies have shown a linear relationship between wafer warp and 1/thickness¿2. Several factors, in combination, have been shown to contribute to warp in product/metal wafers such as: metal layers, polyimide layers, BCB layers, metal density, thermal stress, tilt direction, front side tension, backside tension, and gravity. The wafer warp phenomenon observed in product/metal wafers is also observed in bare silicon wafers. The difference between bare silicon test wafers and product wafers is the layering of the circuitry side on product/metal wafers, which has shown to be a large contributor to wafer warp. Damage to the wafer backside during conventional grinding can induce a large amount of warp in both product/metal and bare silicon wafers.","PeriodicalId":296968,"journal":{"name":"2004 IEEE Workshop on Microelectronics and Electron Devices","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Experimental investigation of bare silicon wafer warp\",\"authors\":\"N. Draney, Jun Liu, T. Jiang\",\"doi\":\"10.1109/WMED.2004.1297371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IC packaging trends demand smaller packaging, which translates to thinner silicon; in some cases as thin as 50 /spl mu/m. Thinning below 305 /spl mu/m induces significant warp in product/metal wafers, which continues to increases as wafers are thinned further. Increased wafer warp results in handling/processing issues. Studies have been performed on product/metal wafers to characterize warp. These studies have shown a linear relationship between wafer warp and 1/thickness¿2. Several factors, in combination, have been shown to contribute to warp in product/metal wafers such as: metal layers, polyimide layers, BCB layers, metal density, thermal stress, tilt direction, front side tension, backside tension, and gravity. The wafer warp phenomenon observed in product/metal wafers is also observed in bare silicon wafers. The difference between bare silicon test wafers and product wafers is the layering of the circuitry side on product/metal wafers, which has shown to be a large contributor to wafer warp. Damage to the wafer backside during conventional grinding can induce a large amount of warp in both product/metal and bare silicon wafers.\",\"PeriodicalId\":296968,\"journal\":{\"name\":\"2004 IEEE Workshop on Microelectronics and Electron Devices\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE Workshop on Microelectronics and Electron Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WMED.2004.1297371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE Workshop on Microelectronics and Electron Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMED.2004.1297371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental investigation of bare silicon wafer warp
IC packaging trends demand smaller packaging, which translates to thinner silicon; in some cases as thin as 50 /spl mu/m. Thinning below 305 /spl mu/m induces significant warp in product/metal wafers, which continues to increases as wafers are thinned further. Increased wafer warp results in handling/processing issues. Studies have been performed on product/metal wafers to characterize warp. These studies have shown a linear relationship between wafer warp and 1/thickness¿2. Several factors, in combination, have been shown to contribute to warp in product/metal wafers such as: metal layers, polyimide layers, BCB layers, metal density, thermal stress, tilt direction, front side tension, backside tension, and gravity. The wafer warp phenomenon observed in product/metal wafers is also observed in bare silicon wafers. The difference between bare silicon test wafers and product wafers is the layering of the circuitry side on product/metal wafers, which has shown to be a large contributor to wafer warp. Damage to the wafer backside during conventional grinding can induce a large amount of warp in both product/metal and bare silicon wafers.