基于金属氧化物修饰石墨烯的多组分混合气体检测传感器阵列

Dongzhi Zhang, Jingjing Liu, Peng Li, Bokai Xia
{"title":"基于金属氧化物修饰石墨烯的多组分混合气体检测传感器阵列","authors":"Dongzhi Zhang, Jingjing Liu, Peng Li, Bokai Xia","doi":"10.1109/MEMSYS.2016.7421781","DOIUrl":null,"url":null,"abstract":"This paper reports a novel nanostructure sensor array combining with back-propagation (BP) neural network toward multi-component gases detection. Tin dioxide and copper oxide modified reduced oxide graphene (rGO) were used as sensing materials toward ammonia and formaldehyde. The sensor array was fabricated via a facile hydrothermal route and layer-by-layer self-assembly method on the substrate with interdigital electrodes (IDEs). And furthermore, this work successfully achieves the recognition and prediction of components in the gas mixture of ammonia and formaldehyde through the combination of graphene-based high-performance sensor array and neural network-based signal processing technologies.","PeriodicalId":157312,"journal":{"name":"2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sensor array based on metal oxide modified graphene for the detection of multi-component mixed gas\",\"authors\":\"Dongzhi Zhang, Jingjing Liu, Peng Li, Bokai Xia\",\"doi\":\"10.1109/MEMSYS.2016.7421781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a novel nanostructure sensor array combining with back-propagation (BP) neural network toward multi-component gases detection. Tin dioxide and copper oxide modified reduced oxide graphene (rGO) were used as sensing materials toward ammonia and formaldehyde. The sensor array was fabricated via a facile hydrothermal route and layer-by-layer self-assembly method on the substrate with interdigital electrodes (IDEs). And furthermore, this work successfully achieves the recognition and prediction of components in the gas mixture of ammonia and formaldehyde through the combination of graphene-based high-performance sensor array and neural network-based signal processing technologies.\",\"PeriodicalId\":157312,\"journal\":{\"name\":\"2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2016.7421781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2016.7421781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文报道了一种结合反向传播(BP)神经网络的新型纳米结构传感器阵列用于多组分气体检测。采用二氧化锡和氧化铜改性还原性氧化石墨烯(rGO)作为氨和甲醛的传感材料。该传感器阵列采用简单的水热法和层接自组装的方法在带有数字间电极(IDEs)的衬底上制备。此外,本工作通过结合基于石墨烯的高性能传感器阵列和基于神经网络的信号处理技术,成功地实现了对氨甲醛混合气体中成分的识别和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensor array based on metal oxide modified graphene for the detection of multi-component mixed gas
This paper reports a novel nanostructure sensor array combining with back-propagation (BP) neural network toward multi-component gases detection. Tin dioxide and copper oxide modified reduced oxide graphene (rGO) were used as sensing materials toward ammonia and formaldehyde. The sensor array was fabricated via a facile hydrothermal route and layer-by-layer self-assembly method on the substrate with interdigital electrodes (IDEs). And furthermore, this work successfully achieves the recognition and prediction of components in the gas mixture of ammonia and formaldehyde through the combination of graphene-based high-performance sensor array and neural network-based signal processing technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信