基于聚类随机访问扫描的测试数据压缩

Yu Hu, Cheng Li, Jia Li, Yin-He Han, Xiao-wei Li, Wei Wang, Hua-wei Li, Laung-Terng Wang, Xiao-Qing Wen
{"title":"基于聚类随机访问扫描的测试数据压缩","authors":"Yu Hu, Cheng Li, Jia Li, Yin-He Han, Xiao-wei Li, Wei Wang, Hua-wei Li, Laung-Terng Wang, Xiao-Qing Wen","doi":"10.1109/ATS.2006.74","DOIUrl":null,"url":null,"abstract":"We proposed clustered random access scan (CRAS) architecture to reduce test data volume. CRAS makes use of the compatibility of the test stimuli to cluster the scan cells, and assigns every cluster a unique address. The compression ratio upper bound of CRAS is analyzed based on the random graph theory. Experimental results on ISCAS'89 benchmarks and two industry designs show that the proposed CRAS architecture can yield on average 67.3% reduction in test data volume, with reasonable area and routing overhead than scan design","PeriodicalId":242530,"journal":{"name":"2006 15th Asian Test Symposium","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Test data compression based on clustered random access scan\",\"authors\":\"Yu Hu, Cheng Li, Jia Li, Yin-He Han, Xiao-wei Li, Wei Wang, Hua-wei Li, Laung-Terng Wang, Xiao-Qing Wen\",\"doi\":\"10.1109/ATS.2006.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed clustered random access scan (CRAS) architecture to reduce test data volume. CRAS makes use of the compatibility of the test stimuli to cluster the scan cells, and assigns every cluster a unique address. The compression ratio upper bound of CRAS is analyzed based on the random graph theory. Experimental results on ISCAS'89 benchmarks and two industry designs show that the proposed CRAS architecture can yield on average 67.3% reduction in test data volume, with reasonable area and routing overhead than scan design\",\"PeriodicalId\":242530,\"journal\":{\"name\":\"2006 15th Asian Test Symposium\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 15th Asian Test Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATS.2006.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 15th Asian Test Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS.2006.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

为了减少测试数据量,提出了聚类随机访问扫描(CRAS)架构。CRAS利用测试刺激的兼容性对扫描单元进行聚类,并为每个聚类分配一个唯一的地址。基于随机图理论分析了CRAS的压缩比上界。在ISCAS'89基准测试和两种工业设计上的实验结果表明,与扫描设计相比,所提出的CRAS架构可以平均减少67.3%的测试数据量,并且具有合理的面积和路由开销
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Test data compression based on clustered random access scan
We proposed clustered random access scan (CRAS) architecture to reduce test data volume. CRAS makes use of the compatibility of the test stimuli to cluster the scan cells, and assigns every cluster a unique address. The compression ratio upper bound of CRAS is analyzed based on the random graph theory. Experimental results on ISCAS'89 benchmarks and two industry designs show that the proposed CRAS architecture can yield on average 67.3% reduction in test data volume, with reasonable area and routing overhead than scan design
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信