{"title":"深度神经网络可靠性评估的仿真平台","authors":"C. D. Sio, S. Azimi, L. Sterpone","doi":"10.1109/DFT50435.2020.9250872","DOIUrl":null,"url":null,"abstract":"In recent years, Deep Neural Networks have been increasingly adopted by a wide range of applications characterized by high-reliability requirements, such as aerospace and automotive. In this paper, we propose an FPGA-based platform for emulating faults in the architecture of DNNs. The approach exploits the reconfigurability of FPGAs to mimic faults affecting the hardware implementing DNNs. The platform allows the emulation of various kinds of fault models enabling the possibility to adapt to different types, devices, and architectures. In this work, a fault injection campaign has been performed on a convolutional layer of AlexNet, demonstrating the feasibility of the platform. Furthermore, the errors induced in the layer are analyzed with respect to the impact on the whole network inference classification.","PeriodicalId":340119,"journal":{"name":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Emulation Platform for Evaluating the Reliability of Deep Neural Networks\",\"authors\":\"C. D. Sio, S. Azimi, L. Sterpone\",\"doi\":\"10.1109/DFT50435.2020.9250872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, Deep Neural Networks have been increasingly adopted by a wide range of applications characterized by high-reliability requirements, such as aerospace and automotive. In this paper, we propose an FPGA-based platform for emulating faults in the architecture of DNNs. The approach exploits the reconfigurability of FPGAs to mimic faults affecting the hardware implementing DNNs. The platform allows the emulation of various kinds of fault models enabling the possibility to adapt to different types, devices, and architectures. In this work, a fault injection campaign has been performed on a convolutional layer of AlexNet, demonstrating the feasibility of the platform. Furthermore, the errors induced in the layer are analyzed with respect to the impact on the whole network inference classification.\",\"PeriodicalId\":340119,\"journal\":{\"name\":\"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT50435.2020.9250872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT50435.2020.9250872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Emulation Platform for Evaluating the Reliability of Deep Neural Networks
In recent years, Deep Neural Networks have been increasingly adopted by a wide range of applications characterized by high-reliability requirements, such as aerospace and automotive. In this paper, we propose an FPGA-based platform for emulating faults in the architecture of DNNs. The approach exploits the reconfigurability of FPGAs to mimic faults affecting the hardware implementing DNNs. The platform allows the emulation of various kinds of fault models enabling the possibility to adapt to different types, devices, and architectures. In this work, a fault injection campaign has been performed on a convolutional layer of AlexNet, demonstrating the feasibility of the platform. Furthermore, the errors induced in the layer are analyzed with respect to the impact on the whole network inference classification.