{"title":"RTN技术在理解三栅极finfet栅极介电可靠性方面的最新进展","authors":"S. Chung","doi":"10.1109/IPFA.2016.7564242","DOIUrl":null,"url":null,"abstract":"The experimental RTN-trap profiling method bas been demonstrated on both planar and trigate MOSFETs. It was achieved by a simple experimental method to take the 2D profiling of the RTN-trap in both oxide depth (vertical) and channel (lateral) directions in the gate oxide. Then, by arranging various 2D fields for the device stress condition, the positions of RTN traps can be precisely controlled. The positions of RTN-traps can be manipulated, showing significant advances for the understanding of the trap generation and the impact on the device reliability. Results have demonstrated why trigate exhibits much worse reliability than the planar ones.","PeriodicalId":206237,"journal":{"name":"2016 IEEE 23rd International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"309 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recent advances of RTN technique towards the understanding of the gate dielectric reliability in trigate FinFETs\",\"authors\":\"S. Chung\",\"doi\":\"10.1109/IPFA.2016.7564242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The experimental RTN-trap profiling method bas been demonstrated on both planar and trigate MOSFETs. It was achieved by a simple experimental method to take the 2D profiling of the RTN-trap in both oxide depth (vertical) and channel (lateral) directions in the gate oxide. Then, by arranging various 2D fields for the device stress condition, the positions of RTN traps can be precisely controlled. The positions of RTN-traps can be manipulated, showing significant advances for the understanding of the trap generation and the impact on the device reliability. Results have demonstrated why trigate exhibits much worse reliability than the planar ones.\",\"PeriodicalId\":206237,\"journal\":{\"name\":\"2016 IEEE 23rd International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"309 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 23rd International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA.2016.7564242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 23rd International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA.2016.7564242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent advances of RTN technique towards the understanding of the gate dielectric reliability in trigate FinFETs
The experimental RTN-trap profiling method bas been demonstrated on both planar and trigate MOSFETs. It was achieved by a simple experimental method to take the 2D profiling of the RTN-trap in both oxide depth (vertical) and channel (lateral) directions in the gate oxide. Then, by arranging various 2D fields for the device stress condition, the positions of RTN traps can be precisely controlled. The positions of RTN-traps can be manipulated, showing significant advances for the understanding of the trap generation and the impact on the device reliability. Results have demonstrated why trigate exhibits much worse reliability than the planar ones.