纳米级双栅mosfet的物理器件模型

Qiang Chen, Lihui Wang, J. Meindl
{"title":"纳米级双栅mosfet的物理器件模型","authors":"Qiang Chen, Lihui Wang, J. Meindl","doi":"10.1109/ICICDT.2004.1309911","DOIUrl":null,"url":null,"abstract":"Compact, physics-based models of subthreshold swing and threshold voltage are presented for undoped double-gate (DG) MOSFETs in symmetric, asymmetric, and ground-plane modes of operation. Applying the new device models, a novel scale-length based methodology is demonstrated to comprehensively and exhaustively investigate threshold voltage variations in DG MOSFETs. In light of ultra-thin silicon film used as the channel and possible introduction of high-permittivity gate dielectrics, physical, analytical models of quantum mechanical effects, gate direct tunneling current, and fringe-induced barrier lowering effect are developed to assess their impact on DG MOSFET scalability. Scaling limits projections indicate that individual DG MOSFET's with good turn-off behavior are feasible at 10nm scale; however, practical exploitation of these devices toward gigascale integrated systems requires significant improvement in process control.","PeriodicalId":158994,"journal":{"name":"2004 International Conference on Integrated Circuit Design and Technology (IEEE Cat. No.04EX866)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Physics-based device models for nanoscale double-gate MOSFETs\",\"authors\":\"Qiang Chen, Lihui Wang, J. Meindl\",\"doi\":\"10.1109/ICICDT.2004.1309911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compact, physics-based models of subthreshold swing and threshold voltage are presented for undoped double-gate (DG) MOSFETs in symmetric, asymmetric, and ground-plane modes of operation. Applying the new device models, a novel scale-length based methodology is demonstrated to comprehensively and exhaustively investigate threshold voltage variations in DG MOSFETs. In light of ultra-thin silicon film used as the channel and possible introduction of high-permittivity gate dielectrics, physical, analytical models of quantum mechanical effects, gate direct tunneling current, and fringe-induced barrier lowering effect are developed to assess their impact on DG MOSFET scalability. Scaling limits projections indicate that individual DG MOSFET's with good turn-off behavior are feasible at 10nm scale; however, practical exploitation of these devices toward gigascale integrated systems requires significant improvement in process control.\",\"PeriodicalId\":158994,\"journal\":{\"name\":\"2004 International Conference on Integrated Circuit Design and Technology (IEEE Cat. No.04EX866)\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on Integrated Circuit Design and Technology (IEEE Cat. No.04EX866)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICDT.2004.1309911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Integrated Circuit Design and Technology (IEEE Cat. No.04EX866)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT.2004.1309911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在对称、非对称和地平面工作模式下,给出了紧凑的、基于物理的双栅mosfet亚阈值摆幅和阈值电压模型。应用新的器件模型,展示了一种新的基于尺度长度的方法来全面和详尽地研究DG mosfet的阈值电压变化。考虑到超薄硅薄膜作为通道和可能引入的高介电常数栅极介质,建立了量子力学效应、栅极直接隧道电流和条纹诱导势垒降低效应的物理解析模型,以评估它们对DG MOSFET可扩展性的影响。尺度限制预测表明,具有良好关断行为的单个DG MOSFET在10nm尺度下是可行的;然而,将这些设备用于千兆级集成系统的实际开发需要在过程控制方面进行重大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-based device models for nanoscale double-gate MOSFETs
Compact, physics-based models of subthreshold swing and threshold voltage are presented for undoped double-gate (DG) MOSFETs in symmetric, asymmetric, and ground-plane modes of operation. Applying the new device models, a novel scale-length based methodology is demonstrated to comprehensively and exhaustively investigate threshold voltage variations in DG MOSFETs. In light of ultra-thin silicon film used as the channel and possible introduction of high-permittivity gate dielectrics, physical, analytical models of quantum mechanical effects, gate direct tunneling current, and fringe-induced barrier lowering effect are developed to assess their impact on DG MOSFET scalability. Scaling limits projections indicate that individual DG MOSFET's with good turn-off behavior are feasible at 10nm scale; however, practical exploitation of these devices toward gigascale integrated systems requires significant improvement in process control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信