通过详细的金属层应力分析改进独立式CMOS-MEMS

S. Orellana, B. Arrazat, P. Fornara, C. Rivero, A. Di Giacomo, S. Blayac, K. Inal, P. Montmitonnet
{"title":"通过详细的金属层应力分析改进独立式CMOS-MEMS","authors":"S. Orellana, B. Arrazat, P. Fornara, C. Rivero, A. Di Giacomo, S. Blayac, K. Inal, P. Montmitonnet","doi":"10.1109/EUROSIME.2014.6813834","DOIUrl":null,"url":null,"abstract":"A freestanding cross-shaped structure designed as a planar rotation stress sensor [1], [2], [3] is manufactured using standard CMOS technology (Complementary Metal-Oxide-Semiconductor). The fabrication process induces thermal residual stresses which result in out-of-plane bending, which degrades the device reliability and precision. To control such movements, the design was studied under stress compensation using a bilayered aluminum (Al) / titanium nitride (TiN) structure. Likewise, a single layer of aluminum was studied, to determine a technological solution, with better compatibility. Fabrication stresses have been measured using Stoney's formula based on bending of full-wafer coatings. The Finite Element Method (FEM) is used to model the effect of these stresses on the geometry after release, and the results are compared with measurements. For this purpose, a comb-shaped structure has been designed to relate residual stress in a freestanding Al-TiN bi-layered structure with its bending. Based on this, conservation or elimination of TiN layer is judged, so that the design remains planar after release. The model is then applied to the movement of the cross-shaped sensor after release, and a second optimization variable is studied for maximum sensitivity: the shape of the hinge between the two arms of the cross.","PeriodicalId":359430,"journal":{"name":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improvement of freestanding CMOS-MEMS through detailed stress analysis in metallic layers\",\"authors\":\"S. Orellana, B. Arrazat, P. Fornara, C. Rivero, A. Di Giacomo, S. Blayac, K. Inal, P. Montmitonnet\",\"doi\":\"10.1109/EUROSIME.2014.6813834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A freestanding cross-shaped structure designed as a planar rotation stress sensor [1], [2], [3] is manufactured using standard CMOS technology (Complementary Metal-Oxide-Semiconductor). The fabrication process induces thermal residual stresses which result in out-of-plane bending, which degrades the device reliability and precision. To control such movements, the design was studied under stress compensation using a bilayered aluminum (Al) / titanium nitride (TiN) structure. Likewise, a single layer of aluminum was studied, to determine a technological solution, with better compatibility. Fabrication stresses have been measured using Stoney's formula based on bending of full-wafer coatings. The Finite Element Method (FEM) is used to model the effect of these stresses on the geometry after release, and the results are compared with measurements. For this purpose, a comb-shaped structure has been designed to relate residual stress in a freestanding Al-TiN bi-layered structure with its bending. Based on this, conservation or elimination of TiN layer is judged, so that the design remains planar after release. The model is then applied to the movement of the cross-shaped sensor after release, and a second optimization variable is studied for maximum sensitivity: the shape of the hinge between the two arms of the cross.\",\"PeriodicalId\":359430,\"journal\":{\"name\":\"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2014.6813834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2014.6813834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

采用标准CMOS技术(互补金属氧化物半导体)制造了一种设计为平面旋转应力传感器的独立式十字形结构[1],[2],[3]。制造过程中会产生热残余应力,导致器件的面外弯曲,降低了器件的可靠性和精度。为了控制这种运动,设计采用双层铝(Al) /氮化钛(TiN)结构进行应力补偿。同样,单层铝进行了研究,以确定一种技术解决方案,具有更好的兼容性。利用基于全晶圆涂层弯曲的Stoney公式测量了制造应力。利用有限元方法模拟了这些应力对释放后几何形状的影响,并与实测结果进行了比较。为此,设计了一种梳状结构,将独立Al-TiN双层结构中的残余应力与其弯曲联系起来。在此基础上,判断TiN层的保留或消除,使设计在发布后保持平面。然后将该模型应用于十字形传感器释放后的运动,并研究了第二个优化变量:十字两臂之间的铰链形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of freestanding CMOS-MEMS through detailed stress analysis in metallic layers
A freestanding cross-shaped structure designed as a planar rotation stress sensor [1], [2], [3] is manufactured using standard CMOS technology (Complementary Metal-Oxide-Semiconductor). The fabrication process induces thermal residual stresses which result in out-of-plane bending, which degrades the device reliability and precision. To control such movements, the design was studied under stress compensation using a bilayered aluminum (Al) / titanium nitride (TiN) structure. Likewise, a single layer of aluminum was studied, to determine a technological solution, with better compatibility. Fabrication stresses have been measured using Stoney's formula based on bending of full-wafer coatings. The Finite Element Method (FEM) is used to model the effect of these stresses on the geometry after release, and the results are compared with measurements. For this purpose, a comb-shaped structure has been designed to relate residual stress in a freestanding Al-TiN bi-layered structure with its bending. Based on this, conservation or elimination of TiN layer is judged, so that the design remains planar after release. The model is then applied to the movement of the cross-shaped sensor after release, and a second optimization variable is studied for maximum sensitivity: the shape of the hinge between the two arms of the cross.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信