{"title":"用VicAddress预测SiO/ sub2 /蚀刻过程中的等离子体充电损伤","authors":"T. Yagisawa, T. Ohmori, T. Shimada, T. Makabe","doi":"10.1109/PPID.2003.1200930","DOIUrl":null,"url":null,"abstract":"We have proposed a prototype of plasma processing CAD, i.e. Vertically Integrated Computer Aided Design for Device processing (VicAddress), that numerically predicts dry etching and related charging damage to a future profile and nanometer scale lower-level elements in ULSI, as well as the low temperature plasma structure. VicAddress has been applied to investigate the dry etching of SiO/sub 2/ film, that requires ions with several hundred to a thousand of eV. Negative ion injection to a wafer was numerically predicted and designed in a pulsed two-frequency capacitively coupled plasma (2f-CCP) operated by a VHF (100 MHz) - LF (1 MHz) system. In this paper, we predict the velocity distribution incident on a wafer in a pulsed 2f-CCP by using a Monte Carlo method under the plasma structure given by RCT modeling. We discuss: functional separation of very high frequency sustaining and low frequency biasing sources; the negative charge injection mode to the SiO/sub 2/ wafer during etching; and control of excess-dissociation of CFj by high energy secondary electrons.","PeriodicalId":196923,"journal":{"name":"2003 8th International Symposium Plasma- and Process-Induced Damage.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of plasma charging damage during SiO/sub 2/ etching by VicAddress\",\"authors\":\"T. Yagisawa, T. Ohmori, T. Shimada, T. Makabe\",\"doi\":\"10.1109/PPID.2003.1200930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have proposed a prototype of plasma processing CAD, i.e. Vertically Integrated Computer Aided Design for Device processing (VicAddress), that numerically predicts dry etching and related charging damage to a future profile and nanometer scale lower-level elements in ULSI, as well as the low temperature plasma structure. VicAddress has been applied to investigate the dry etching of SiO/sub 2/ film, that requires ions with several hundred to a thousand of eV. Negative ion injection to a wafer was numerically predicted and designed in a pulsed two-frequency capacitively coupled plasma (2f-CCP) operated by a VHF (100 MHz) - LF (1 MHz) system. In this paper, we predict the velocity distribution incident on a wafer in a pulsed 2f-CCP by using a Monte Carlo method under the plasma structure given by RCT modeling. We discuss: functional separation of very high frequency sustaining and low frequency biasing sources; the negative charge injection mode to the SiO/sub 2/ wafer during etching; and control of excess-dissociation of CFj by high energy secondary electrons.\",\"PeriodicalId\":196923,\"journal\":{\"name\":\"2003 8th International Symposium Plasma- and Process-Induced Damage.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 8th International Symposium Plasma- and Process-Induced Damage.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPID.2003.1200930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 8th International Symposium Plasma- and Process-Induced Damage.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPID.2003.1200930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of plasma charging damage during SiO/sub 2/ etching by VicAddress
We have proposed a prototype of plasma processing CAD, i.e. Vertically Integrated Computer Aided Design for Device processing (VicAddress), that numerically predicts dry etching and related charging damage to a future profile and nanometer scale lower-level elements in ULSI, as well as the low temperature plasma structure. VicAddress has been applied to investigate the dry etching of SiO/sub 2/ film, that requires ions with several hundred to a thousand of eV. Negative ion injection to a wafer was numerically predicted and designed in a pulsed two-frequency capacitively coupled plasma (2f-CCP) operated by a VHF (100 MHz) - LF (1 MHz) system. In this paper, we predict the velocity distribution incident on a wafer in a pulsed 2f-CCP by using a Monte Carlo method under the plasma structure given by RCT modeling. We discuss: functional separation of very high frequency sustaining and low frequency biasing sources; the negative charge injection mode to the SiO/sub 2/ wafer during etching; and control of excess-dissociation of CFj by high energy secondary electrons.