模拟PCB运动对机械冲击下微结构响应的影响

A. Ramini, M. Younis, R. Miles
{"title":"模拟PCB运动对机械冲击下微结构响应的影响","authors":"A. Ramini, M. Younis, R. Miles","doi":"10.1109/ESIME.2010.5464602","DOIUrl":null,"url":null,"abstract":"Microelectomechanical systems (MEMS) are often used in portable electronic products that can be subjected to mechanical shock or impact due to being dropped accidentally. This work presents a modeling and simulation effort to investigate the effect of the vibration of a printed circuit board (PCB) on the dynamics of MEMS microstructures when subjected to shock. Two models are presented. In the first approach, the PCB is modeled as an Euler-Bernoulli beam to which a lumped model of a MEMS device is attached. In the second approach, a special case of a cantilever microbeam is modeled as a distributed-parameter system, which is attached to the PCB. These lumped-distributed and distributed-distributed models are solved numerically by integration of the equation of motion over time using the Galerkin procedure. Results of the two models are compared against each other for the case of a cantilever microbeam and also compared to the predictions of a finite-element model using ANSYS. The influence of the higher order vibration modes of the PCB, the location of the MEMS device on the PCB, the electrostatic forces, damping, and shock pulse duration are presented. It is found that neglecting the effects of the higher order modes of the PCB and the location of the MEMS device can cause incorrect predictions of the response of the microstructure and may lead to failure of the MEMS device. It is observed from the results that in some cases, depending on the different parameters of the problem, the response of the microstructure can be amplified causing early dynamic pull-in and hence possibly failure of the device.","PeriodicalId":152004,"journal":{"name":"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Modeling the effects of the PCB motion on the response of microstructures under mechanical shock\",\"authors\":\"A. Ramini, M. Younis, R. Miles\",\"doi\":\"10.1109/ESIME.2010.5464602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microelectomechanical systems (MEMS) are often used in portable electronic products that can be subjected to mechanical shock or impact due to being dropped accidentally. This work presents a modeling and simulation effort to investigate the effect of the vibration of a printed circuit board (PCB) on the dynamics of MEMS microstructures when subjected to shock. Two models are presented. In the first approach, the PCB is modeled as an Euler-Bernoulli beam to which a lumped model of a MEMS device is attached. In the second approach, a special case of a cantilever microbeam is modeled as a distributed-parameter system, which is attached to the PCB. These lumped-distributed and distributed-distributed models are solved numerically by integration of the equation of motion over time using the Galerkin procedure. Results of the two models are compared against each other for the case of a cantilever microbeam and also compared to the predictions of a finite-element model using ANSYS. The influence of the higher order vibration modes of the PCB, the location of the MEMS device on the PCB, the electrostatic forces, damping, and shock pulse duration are presented. It is found that neglecting the effects of the higher order modes of the PCB and the location of the MEMS device can cause incorrect predictions of the response of the microstructure and may lead to failure of the MEMS device. It is observed from the results that in some cases, depending on the different parameters of the problem, the response of the microstructure can be amplified causing early dynamic pull-in and hence possibly failure of the device.\",\"PeriodicalId\":152004,\"journal\":{\"name\":\"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESIME.2010.5464602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2010.5464602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

微机电系统(MEMS)常用于便携式电子产品,这些产品可能因意外掉落而受到机械冲击或冲击。这项工作提出了建模和仿真的努力,以研究印刷电路板(PCB)的振动对MEMS微结构受到冲击时的动力学的影响。提出了两种模型。在第一种方法中,PCB被建模为欧拉-伯努利梁,其中附加了MEMS器件的集总模型。在第二种方法中,将悬臂微梁的特殊情况建模为附着在PCB板上的分布参数系统。这些集总分布和分布分布模型是用伽辽金程序对运动方程随时间的积分进行数值求解的。在悬臂微梁的情况下,对两种模型的结果进行了比较,并与ANSYS有限元模型的预测结果进行了比较。分析了PCB的高阶振动模式、MEMS器件在PCB上的位置、静电力、阻尼和冲击脉冲持续时间等因素的影响。研究发现,忽略PCB高阶模态和MEMS器件位置的影响会导致对微结构响应的错误预测,并可能导致MEMS器件的失效。从结果中可以观察到,在某些情况下,根据问题的不同参数,微观结构的响应可能会被放大,导致早期动态拉入,从而可能导致设备故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the effects of the PCB motion on the response of microstructures under mechanical shock
Microelectomechanical systems (MEMS) are often used in portable electronic products that can be subjected to mechanical shock or impact due to being dropped accidentally. This work presents a modeling and simulation effort to investigate the effect of the vibration of a printed circuit board (PCB) on the dynamics of MEMS microstructures when subjected to shock. Two models are presented. In the first approach, the PCB is modeled as an Euler-Bernoulli beam to which a lumped model of a MEMS device is attached. In the second approach, a special case of a cantilever microbeam is modeled as a distributed-parameter system, which is attached to the PCB. These lumped-distributed and distributed-distributed models are solved numerically by integration of the equation of motion over time using the Galerkin procedure. Results of the two models are compared against each other for the case of a cantilever microbeam and also compared to the predictions of a finite-element model using ANSYS. The influence of the higher order vibration modes of the PCB, the location of the MEMS device on the PCB, the electrostatic forces, damping, and shock pulse duration are presented. It is found that neglecting the effects of the higher order modes of the PCB and the location of the MEMS device can cause incorrect predictions of the response of the microstructure and may lead to failure of the MEMS device. It is observed from the results that in some cases, depending on the different parameters of the problem, the response of the microstructure can be amplified causing early dynamic pull-in and hence possibly failure of the device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信