微致动器对近地轨道刺激的力学和热模拟

T. Creutzburg, H. Gatzen
{"title":"微致动器对近地轨道刺激的力学和热模拟","authors":"T. Creutzburg, H. Gatzen","doi":"10.1109/ESIME.2010.5464582","DOIUrl":null,"url":null,"abstract":"The design of a microactuator serving as an implantable hearing aid to overcome ambylacousia was conducted by executing mechanical and thermal Finite Element Method (FEM) analyses using the ANSYS® software simulation tool. To do so, the deflection conditions to be fulfilled by the system were determined. The two challenges were to achieve a sufficiently high resonance frequency and to accommodate the physiological restrictions in the middle ear and the cochlea defining the maximal size of the microactuator. A model of the mechanical system was created and modal analyses were carried out. In the next step, the force required to deflect the membrane in the static case and under damping of the cochlea was simulated. In a last step, a 3-D thermal model of the complete system including the micromagnetics was created to investigate the temperature rise in the system. This is important with respect to the implantation of the actuator into the human body, avoiding a necrosis of the human tissue.","PeriodicalId":152004,"journal":{"name":"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mechanical and thermal simulations of a microactuator for the Stimulation of the Perilymph\",\"authors\":\"T. Creutzburg, H. Gatzen\",\"doi\":\"10.1109/ESIME.2010.5464582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of a microactuator serving as an implantable hearing aid to overcome ambylacousia was conducted by executing mechanical and thermal Finite Element Method (FEM) analyses using the ANSYS® software simulation tool. To do so, the deflection conditions to be fulfilled by the system were determined. The two challenges were to achieve a sufficiently high resonance frequency and to accommodate the physiological restrictions in the middle ear and the cochlea defining the maximal size of the microactuator. A model of the mechanical system was created and modal analyses were carried out. In the next step, the force required to deflect the membrane in the static case and under damping of the cochlea was simulated. In a last step, a 3-D thermal model of the complete system including the micromagnetics was created to investigate the temperature rise in the system. This is important with respect to the implantation of the actuator into the human body, avoiding a necrosis of the human tissue.\",\"PeriodicalId\":152004,\"journal\":{\"name\":\"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESIME.2010.5464582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2010.5464582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用ANSYS®软件仿真工具进行机械和热有限元分析,设计了一种用于克服耳聋的植入式助听器微致动器。为此,确定了系统要满足的挠度条件。两个挑战是实现足够高的共振频率,并适应中耳和耳蜗的生理限制,定义了微执行器的最大尺寸。建立了机械系统模型,并进行了模态分析。在接下来的步骤中,模拟了在静态情况下和耳蜗阻尼下使膜偏转所需的力。在最后一步,建立了包括微磁在内的完整系统的三维热模型,以研究系统中的温升。这对于将驱动器植入人体,避免人体组织坏死是很重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical and thermal simulations of a microactuator for the Stimulation of the Perilymph
The design of a microactuator serving as an implantable hearing aid to overcome ambylacousia was conducted by executing mechanical and thermal Finite Element Method (FEM) analyses using the ANSYS® software simulation tool. To do so, the deflection conditions to be fulfilled by the system were determined. The two challenges were to achieve a sufficiently high resonance frequency and to accommodate the physiological restrictions in the middle ear and the cochlea defining the maximal size of the microactuator. A model of the mechanical system was created and modal analyses were carried out. In the next step, the force required to deflect the membrane in the static case and under damping of the cochlea was simulated. In a last step, a 3-D thermal model of the complete system including the micromagnetics was created to investigate the temperature rise in the system. This is important with respect to the implantation of the actuator into the human body, avoiding a necrosis of the human tissue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信