{"title":"基于Loewner矩阵的长互连延迟理性宏模型","authors":"Mohamed Sahouli, A. Dounavis","doi":"10.1109/EPEPS.2016.7835428","DOIUrl":null,"url":null,"abstract":"This paper presents a method to obtain delay-based macromodels of electrically long interconnects from tabulated frequency data. The proposed algorithm first extracts multiple propagation delays and splits the data into single delay regions using a time-frequency decomposition transform. Then, the attenuation losses of each region is approximated using the Loewner Matrix approach. The resulting macromodel is a combination of delay rational approximations. A numerical example is presented to illustrate efficiency of the proposed method compared to traditional Loewner where the delays are not extracted beforehand.","PeriodicalId":241629,"journal":{"name":"2016 IEEE 25th Conference on Electrical Performance Of Electronic Packaging And Systems (EPEPS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Delay rational macromodels of long interconnects using Loewner Matrix\",\"authors\":\"Mohamed Sahouli, A. Dounavis\",\"doi\":\"10.1109/EPEPS.2016.7835428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to obtain delay-based macromodels of electrically long interconnects from tabulated frequency data. The proposed algorithm first extracts multiple propagation delays and splits the data into single delay regions using a time-frequency decomposition transform. Then, the attenuation losses of each region is approximated using the Loewner Matrix approach. The resulting macromodel is a combination of delay rational approximations. A numerical example is presented to illustrate efficiency of the proposed method compared to traditional Loewner where the delays are not extracted beforehand.\",\"PeriodicalId\":241629,\"journal\":{\"name\":\"2016 IEEE 25th Conference on Electrical Performance Of Electronic Packaging And Systems (EPEPS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 25th Conference on Electrical Performance Of Electronic Packaging And Systems (EPEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2016.7835428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 25th Conference on Electrical Performance Of Electronic Packaging And Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2016.7835428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Delay rational macromodels of long interconnects using Loewner Matrix
This paper presents a method to obtain delay-based macromodels of electrically long interconnects from tabulated frequency data. The proposed algorithm first extracts multiple propagation delays and splits the data into single delay regions using a time-frequency decomposition transform. Then, the attenuation losses of each region is approximated using the Loewner Matrix approach. The resulting macromodel is a combination of delay rational approximations. A numerical example is presented to illustrate efficiency of the proposed method compared to traditional Loewner where the delays are not extracted beforehand.