C. Lawrence, B. Cheek, T.E. Lawrence, S. Kumar, A. Haggag, R. J. Baker, W. B. Knowlton
{"title":"栅极介电退化对nMOS器件的影响","authors":"C. Lawrence, B. Cheek, T.E. Lawrence, S. Kumar, A. Haggag, R. J. Baker, W. B. Knowlton","doi":"10.1109/UGIM.2003.1225739","DOIUrl":null,"url":null,"abstract":"The effects of noise on gate oxide reliability were examined in nMOSCAPs. Noise is modeled as a voltage spike constructively interfering with a carrier signal. This data correlates to the noise model where device lifetime exponentially decreases with an increase in noise voltage. Noise voltages with the same magnitude as the carrier signal voltage decrease the lifetime by as much as three orders of magnitude. For noise that is one-fifth of the magnitude of the carrier signal voltage, an order of magnitude is observed. As interconnect spacing decreases, the probability of noise and capacitive coupling increases; therefore, the effect of noise on the lifetime of MOS devices may be of great concern.","PeriodicalId":356452,"journal":{"name":"Proceedings of the 15th Biennial University/Government/ Industry Microelectronics Symposium (Cat. No.03CH37488)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gate dielectric degradation effects on nMOS devices using a noise model approach\",\"authors\":\"C. Lawrence, B. Cheek, T.E. Lawrence, S. Kumar, A. Haggag, R. J. Baker, W. B. Knowlton\",\"doi\":\"10.1109/UGIM.2003.1225739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of noise on gate oxide reliability were examined in nMOSCAPs. Noise is modeled as a voltage spike constructively interfering with a carrier signal. This data correlates to the noise model where device lifetime exponentially decreases with an increase in noise voltage. Noise voltages with the same magnitude as the carrier signal voltage decrease the lifetime by as much as three orders of magnitude. For noise that is one-fifth of the magnitude of the carrier signal voltage, an order of magnitude is observed. As interconnect spacing decreases, the probability of noise and capacitive coupling increases; therefore, the effect of noise on the lifetime of MOS devices may be of great concern.\",\"PeriodicalId\":356452,\"journal\":{\"name\":\"Proceedings of the 15th Biennial University/Government/ Industry Microelectronics Symposium (Cat. No.03CH37488)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th Biennial University/Government/ Industry Microelectronics Symposium (Cat. No.03CH37488)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UGIM.2003.1225739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th Biennial University/Government/ Industry Microelectronics Symposium (Cat. No.03CH37488)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UGIM.2003.1225739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gate dielectric degradation effects on nMOS devices using a noise model approach
The effects of noise on gate oxide reliability were examined in nMOSCAPs. Noise is modeled as a voltage spike constructively interfering with a carrier signal. This data correlates to the noise model where device lifetime exponentially decreases with an increase in noise voltage. Noise voltages with the same magnitude as the carrier signal voltage decrease the lifetime by as much as three orders of magnitude. For noise that is one-fifth of the magnitude of the carrier signal voltage, an order of magnitude is observed. As interconnect spacing decreases, the probability of noise and capacitive coupling increases; therefore, the effect of noise on the lifetime of MOS devices may be of great concern.