具有高强度和可控刚度的微结构多孔材料

J. Pikul, S. Ozerinc, Runyu Zhang, P. Braun, W. King
{"title":"具有高强度和可控刚度的微结构多孔材料","authors":"J. Pikul, S. Ozerinc, Runyu Zhang, P. Braun, W. King","doi":"10.1109/MEMSYS.2016.7421658","DOIUrl":null,"url":null,"abstract":"This paper reports the engineering of large area cellular solids with controllable stiffness and specific strengths up to 230 MPa/(Mg/m3), which is stronger than most high strength alloys including 4143 steel and Ti-6Al-4V. The high strength arises from the size-based strengthening of the nm-sized struts. The cellular solid's porosity can be varied from 30 to 90% to control the specific stiffness from 4-20 GPa/(Mg/m3). The cellular solid's regular microporous architecture and self-assembly based fabrication allow nanometer to micrometer control over the hierarchical geometry and chemistry, which enable large area materials with high strength and controllable stiffness.","PeriodicalId":157312,"journal":{"name":"2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Micro architected porous material with high strength and controllable stiffness\",\"authors\":\"J. Pikul, S. Ozerinc, Runyu Zhang, P. Braun, W. King\",\"doi\":\"10.1109/MEMSYS.2016.7421658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the engineering of large area cellular solids with controllable stiffness and specific strengths up to 230 MPa/(Mg/m3), which is stronger than most high strength alloys including 4143 steel and Ti-6Al-4V. The high strength arises from the size-based strengthening of the nm-sized struts. The cellular solid's porosity can be varied from 30 to 90% to control the specific stiffness from 4-20 GPa/(Mg/m3). The cellular solid's regular microporous architecture and self-assembly based fabrication allow nanometer to micrometer control over the hierarchical geometry and chemistry, which enable large area materials with high strength and controllable stiffness.\",\"PeriodicalId\":157312,\"journal\":{\"name\":\"2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2016.7421658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2016.7421658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文报道了具有可控刚度和比强度高达230 MPa/(Mg/m3)的大面积细胞状固体的工程,其强度超过了大多数高强度合金,包括4143钢和Ti-6Al-4V。高强度来源于纳米级支撑的基于尺寸的强化。多孔固体的孔隙率可在30 ~ 90%之间变化,比刚度控制在4 ~ 20 GPa/(Mg/m3)之间。细胞固体的规则微孔结构和基于自组装的制造允许对分层几何和化学进行纳米到微米级的控制,从而使大面积材料具有高强度和可控刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micro architected porous material with high strength and controllable stiffness
This paper reports the engineering of large area cellular solids with controllable stiffness and specific strengths up to 230 MPa/(Mg/m3), which is stronger than most high strength alloys including 4143 steel and Ti-6Al-4V. The high strength arises from the size-based strengthening of the nm-sized struts. The cellular solid's porosity can be varied from 30 to 90% to control the specific stiffness from 4-20 GPa/(Mg/m3). The cellular solid's regular microporous architecture and self-assembly based fabrication allow nanometer to micrometer control over the hierarchical geometry and chemistry, which enable large area materials with high strength and controllable stiffness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信